图神经网络7日打卡营学习总结

图与图学习图的定义图表示物件与物件之间的关系的数学对象,是图论的基本研究对象。python构建图import numpy as npimport randomimport networkx as nxfrom IPython.display import Imageimport matplotlib.pyplot as plt# Load the graphG_karate = nx.karate_club_graph()# Find key-values for the graph
摘要由CSDN通过智能技术生成

图与图学习

图的定义

图表示物件与物件之间的关系的数学对象,是图论的基本研究对象。

python构建图

import numpy as np
import random
import networkx as nx
from IPython.display import Image
import matplotlib.pyplot as plt
# Load the graph
G_karate = nx.karate_club_graph()
# Find key-values for the graph
pos = nx.spring_layout(G_karate)
# Plot the graph
nx.draw(G_karate, cmap = plt.get_cmap('rainbow'), 
		with_labels=True, pos=pos)

在这里插入图片描述

图的基本表示方法

  • 图 G=(V, E) 构成要素:

节点(verticle):V=1,…,n;

边:E⊆V×V;

边 (i,j) ∈ E 连接了节点 i 和 j
i 和 j 被称为相邻节点(neighbor)

节点的度(degree):指相邻节点的数量。

图是完备的(complete):所有节点都具备所有可能的连接方式。

从i到j的路径(path):从i到达j的边的序列,路径的长度(length)等于所经过的边的数量。

图的直径(diameter):连接任意两个节点的所有最短路径中最长路径的长度。

测地路径(geodesic path):两个节点之间的最短路径。

主要的图算法

图算法类别主要有三个:

  • Pathfinding(寻路):根据可用性和质量等条件确定最优路径。我们也将搜索算法包含在这一类别中。这可用于确定最快路由或流量路由。

  • Centrality(中心性):确定网络中节点的重要性。这可用于识别社交网络中有影响力的人或识别网络中潜在的攻击目标。 Community

  • detection(社群检测):评估群体聚类的方式。这可用于划分客户或检测欺诈等。

图机器学习

链接预测(Link prediction)

在链接预测中,给定图G,我们的目标是预测新边。例如,当图未被完全观察时,或者当新客户加入平台(例如,新的LinkedIn用户)时,预测未来关系或缺失边是很有用的。

节点标记预测(Node labeling)

给定一个未标记某些节点的图,我们希望对这些节点的标签进行预测。是一种半监督的学习问题。

图嵌入(Graph Embedding)

  • 对图的组件进行嵌入(节点,边,特征…)(Node2Vec)

  • 对图的子图或整个图进行嵌入(Graph2Vec)

图神经网络有哪些

  • 图卷积网络(Graph Convolution Networks,GCNs)
  • 图注意力网络(Graph Attention Networks)
  • 图自动编码器(Graph Autoencoders)
  • 图生成网络(Graph Generative Networks)
  • 图时空网络(Graph Spatial-Temporal Networks)

熟悉 PGL 使用

1. 环境安装
!pip install pgl
2. 使用 PGL 来创建一张图
import pgl
from pgl import graph  # 导入 PGL 中的图模块
import paddle.fluid as fluid # 导入飞桨框架
import numpy as np
def build_graph():
    # 定义图中的节点数目,我们使用数字来表示图中的每个节点
    num_nodes = 10
    # 定义图中的边集
    edge_list = [(2, 0), (2, 1), (3, 1),(4, 0), (5, 0),
             (6, 0), (6, 4), (6, 5), (7, 0), (7, 1),
             (7, 2), (7, 3), (8, 0), (9, 7)]
    # 随机初始化节点特征,特征维度为 d
    d = 16
    feature = np.random.randn(num_nodes, d).astype("float32")

    # 随机地为每条边赋值一个权重
    edge_feature = np.random.randn(len(edge_list), 1).astype("float32")
    # 创建图对象,最多四个输入
    g = graph.Graph(num_nodes = num_nodes,
                    edges = edge_list,
                    node_feat = {
   'feature':feature},
                    edge_feat ={
   'edge_feature': edge_feature})
    return g
g = build_graph()
print('图中共计 %d 个节点' % g.num_nodes)
print('图中共计 %d 条边' % g.num_edges)
3. 定义图模型
# 定义一个同时传递节点特征和边权重的简单模型层。
def model_layer(gw, nfeat, efeat, hidden_size, name, activation):
    '''
    gw: GraphWrapper 图数据容器,用于在定义模型的时候使用,后续训练时再feed入真实数据
    nfeat: 节点特征
    efeat: 边权重
    hidden_size: 模型隐藏层维度
    activation: 使用的激活函数
    '''

    # 定义 send 函数
    def send_func(src_feat, dst_feat, edge_feat):
        # 将源节点的节点特征和边权重共同作为消息发送
        return src_feat['h'] * edge_feat['e']

    # 定义 recv 函数
    def recv_func(feat):
        # 目标节点接收源节点消息,采用 sum 的聚合方式
        return fluid.layers.sequence_pool(feat, pool_type='sum')

    # 触发消息传递机制
    msg = gw.send(send_func, nfeat_list=[('h', nfeat)], efeat_list=[('e', efeat)])
    output = gw.recv(msg, recv_func)
    output = fluid.layers.fc(output,
                    size=hidden_size,
                    bias_attr=False,
                    act=activation,
                    name=name)
    return output
4. 模型定义
class Model(object):
    def __init__(self, graph):
        """
        graph: 我们前面创建好的图
        """
        # 创建 GraphWrapper 图数据容器,用于在定义模型的时候使用,后续训练时再feed入真实数据
        self.gw = pgl.graph_wrapper.GraphWrapper(name='graph',
                    node_feat=graph.node_feat_info(),
                    edge_feat=graph.edge_feat_info())
        # 作用同 GraphWrapper,此处用作节点标签的容器
        self.node_label = fluid.layers.data("node_label", shape=[None, 1],
                    dtype="float32", append_batch_size=False)

    def build_model(self):
        # 定义两层model_layer
        output = model_layer(self.gw, 
                             self.gw.node_feat['feature'], 
                             self.gw.edge_feat['edge_feature'],
                             hidden_size=8, 
                             name='layer_1', 
                             activation='relu')
        output = model_layer(self.gw, 
                             output, 
                             self.gw.edge_feat['edge_feature'],
                             hidden_size=1, 
                             name='layer_2', 
                             activation=None)
                             
        # 对于二分类任务,可以使用以下 API 计算损失
        loss = fluid.layers.sigmoid_cross_entropy_with_logits(x=output, 
                                                              label=self.node_label)
        # 计算平均损失
        loss = fluid.layers.mean(loss)
        
        # 计算准确率
        prob = fluid.layers.sigmoid(output)
        pred = prob > 0.5
        pred = fluid.layers.cast(prob > 0.5, dtype="float32")
        correct = fluid.layers.equal(pred, self.node_label)
        correct = fluid.layers.cast(correct, dtype="float32")
        acc = fluid.layers.reduce_mean(correct)

        return loss, acc
5. 训练前准备
# 是否在 GPU 或 CPU 环境运行
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
# 定义程序,也就是我们的 Program
startup_program = fluid.Program() # 用于初始化模型参数
train_program = fluid.Program()   # 训练时使用的主程序,包含前向计算和反向梯度计算
test_program = fluid.Program()    # 测试时使用的程序,只包含前向计算
with fluid.program_guard(train_program, startup_program):
    model = Model(g)
    # 创建模型和计算 Loss
    loss, acc = model.build_model()
    # 选择Adam优化器,学习率设置为0.01
    adam = fluid.optimizer.Adam(learning_rate=0.01)
    adam.minimize(loss) # 计算梯度和执行梯度反向传播过程
# 复制构造 test_program,与 train_program的区别在于不需要梯度计算和反向过程。
test_program = train_program.clone(for_test=True)
# 定义一个在 place(CPU)上的Executor来执行program
exe = fluid.Executor
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值