【Mathematica】
文章平均质量分 62
Teddy van Jerry
I will come forth as gold!
展开
-
【Mathematica】 隐函数的绘制
版本:12.1题目作出下列隐函数的曲线:(1)x4+y4=16x^4+y^4=16x4+y4=16(2)xy=exyxy=e^{xy}xy=exy代码nb 文件在我的 GitHub 项目 Teddy-van-Jerry/SEU_Mathematica 下载。ContourPlot[x^4 + y^4 == 16, {x, -2, 2}, {y, -2, 2}, Axes -> True, AxesStyle -> Dashed, AxesLabel -> {"x", "y原创 2021-05-31 09:53:07 · 5477 阅读 · 0 评论 -
【Mathematica】 最小二乘法
版本:12.1题目一种合金在某种添加剂的不同浓度下进行实验,得到如下数据:已知函数 yyy 与 xxx 的关系适合模型:y=a+bx+cx2y=a+bx+cx^2y=a+bx+cx2,试用最小二乘法确定系数 a,b,ca,b,ca,b,c,并求出拟合曲线。代码nb 文件在我的 GitHub 项目 Teddy-van-Jerry/SEU_Mathematica 下载。Tx = {10.0, 15.0, 20.0, 25.0, 30.0};Ty = {27.0, 26.8, 26.5, 26原创 2021-05-24 13:15:14 · 2864 阅读 · 0 评论 -
【Mathematica】 曲面的绘制
版本:12.1题目观察二次曲面族 z=x2+y2+kxyz=x^2+y^2+kxyz=x2+y2+kxy 的图形。特别注意确定 kkk 的这样一些值,当 kkk 经过这些值时,曲面从一种类型变成了另一种类型。代码nb 文件在我的 GitHub 项目 Teddy-van-Jerry/SEU_Mathematica 下载。F[x_, y_, k_] := x^2 + y^2 + k*x*y;For[i = -6, i < 6, i++, G = Plot3D[F[x, y, i], {x,原创 2021-05-24 11:00:00 · 3586 阅读 · 1 评论 -
【Mathematica】 定积分的近似计算
题目梯形法f[x_] := Sin[x^2];a = 0;b = Pi/2;m2 = N[f''[0]];delta = 10^(-4);n0 = 100;t[n_] := (b - a)/ n*((f[a] + f[b])/2 + Sum[f[a + i*(b - a)/n], {i, 1, n - 1}]);Do[Print[n, "\t", N[t[n], 8]]; If[(b - a)^3/(12 n^2)*m2 < delta, Break[], If[n原创 2021-01-06 00:05:07 · 3627 阅读 · 1 评论 -
【Mathematica】 泰勒展开
目标此处对cos(x)\cos(x)cos(x)展开到五阶并输出其误差。运用公式f(x)=f(x0)∑k=1ncos(x0+nπ2)k!xk+o(∣x−x0∣n+1)f(x)=f(x_0)\sum_{k = 1}^{n} \frac{\cos\left(x_0+n\frac{\pi}{2}\right)}{k!}x^k+o\left(|x-x_0|^{n+1}\right)f(x)=f(x0)k=1∑nk!cos(x0+n2π)xk+o(∣x−x0∣n+1)代码d0 = -1;W原创 2020-12-27 15:46:23 · 10107 阅读 · 1 评论 -
【Mathematica】 函数的积分
代码定积分:(快捷键[Esc]+intt+[Esc])\[Integral](x^2/Sqrt[9 - x^2]) \[DifferentialD]x不定积分:(快捷键[Esc]+dintt+[Esc])\!\(\*SubsuperscriptBox[\(\[Integral]\), \(-2\), \(1\)]\(\((x^2/ Sqrt[9 - x^2])\) \[DifferentialD]x\)\)效果ALL RIGHTS RESERVED © 2020 Teddy v原创 2020-12-09 20:55:50 · 3831 阅读 · 0 评论 -
【Mathematica】 函数性态的观察
版本:Mathematica 12.1题目已知函数f(x)=1x2+2x+c (−5⩽x⩽4) , f(x)=\frac{1}{x^2+2x+c}\ (-5\leqslant x \leqslant 4) \text{ ,}f(x)=x2+2x+c1 (−5⩽x⩽4) ,作出并比较当 ccc 分别取−1,0,1,2,3-1,0,1,2,3−1,0,1,2,3 时的图形,并从图上观察极值点、驻点、单调区间、凹凸区间以及渐近线。代码f[x_] := 1/(原创 2020-12-05 23:22:26 · 562 阅读 · 1 评论 -
【Mathematica】 数列极限的观察
版本:12.1题目:通过绘图,观察重要极限limn→∞(1+1n)n=e\lim\limits_{n\rightarrow\infin}\left(1+\frac{1}{n}\right)^n=en→∞lim(1+n1)n=e。代码:an = {(1 + 1/1)^1, (1 + 1/2)^2, (1 + 1/3)^3};Do[an = Append[an, (1 + 1/i)^i]; t = ListPlot[an, PlotRange -> {1.8, 2.8}, Plo原创 2020-12-05 09:38:10 · 2709 阅读 · 3 评论 -
【Mathematica】 Mathematica 的安装
版本:12.1其实很简单,就是一直确定即可。激活的地方根据情况激活。ALL RIGHTS RESERVED © 2020 Teddy van Jerry欢迎转载,转载请注明出处。See alsoTeddy van Jerry 的导航页原创 2020-12-05 08:55:48 · 1811 阅读 · 0 评论