Deepseek目前的方法仍然很有热度,比如说仅仅使用规则作为奖励指向,不关注中间的推理过程,又或者是使用GRPO代替PPO或者DPO,两者都是化繁为简的方法。
前言
比较一下当前在大模型中使用强化学习的常见算法和流程。
| 名称 | 类型 | 核心思想 | 数据来源 | 优化目标 | 是否需要奖励函数 | 是否需要人类偏好 |
|---|---|---|---|---|---|---|
| PPO | 算法 | 稳定高效地优化策略(RL) | 环境或奖励模型 | 最大化期望奖励 | ✅ | ❌ |
| DPO | 算法 | 直接基于偏好对优化策略(无需 reward) | 偏好对(A 比 B 好) | 让好样本概率更高 | ❌ | ✅ |
| GRPO | 算法 | 使用排序/打分的奖励进行 RL(类似 DPO 的泛化) | 相对排序数据 | 最大化奖励差异引导的策略提升 | ✅ | ❌ |
| RLHF | 流程 | 用人类偏好训练奖励模型 + 用 RL 优化策略 | 人类偏好 → 奖励模型 | 奖励最大化 | ✅ (奖励来自人类偏好) | ✅ |
| RLAIF | 流程 | 用 AI 模型生成偏好或奖励,替代人工 | AI 偏好/打分 | 奖励或偏好最大化 | ✅/❌ 可选 | ❌ (用 AI 代替) |
GRPO:比如说同一个prompt,大模型给出了多个回答,给定了两个奖励函数,一个是生成的回答长度越长奖励越高,还有一个是回答正确了再给奖励,最终取所有回答的平均值,超过平均值的接受。基于规则选择,打分,超过平均的接受
目前流行的SFT+RL的框架有trl、OpenRLHF、LLama-Factory、Unsloth,看下来在Unsloth中使用trl使用GRPO有比较成熟的例子,并且可以使用Lora微调。
1.安装环境
使用以下方式安装环境和库
conda create --name unsloth_env \
python=3.11 \
pytorch-cuda=12.1 \
pytorch cudatoolkit -c pytorch -c nvidia \
-y
conda activate unsloth_env
pip install unsloth vllm
在实际使用的过程中,发现版本问题可能会造成报错。因此,推荐Unsloth 2025.3.8, Unsloth=2025.3.7,vLLM: 0.7.3,transformers:4.48.3
2.设置Unsloth
Unsloth提供了FastLanguageModel类,集成了转换器和Unsloth优化。
from unsloth import FastLanguageModel
import torch
max_seq_length = 1024 # 增加推理长度
lora_rank = 32 # 更大的秩 = 更聪明, 但更慢
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="model/Meta-Llama-3.1-8B-Instruct",
max_seq_length=max_seq_length,
load_in_4bit=True, # 如果是LoRA 16bit就改成False
fast_inference=True, # 使得vLLM更快推理
max_lora_rank=lora_rank,
gpu_memory_utilization=0.6, # 减少内存不足
)
model = FastLanguageModel.get_peft_model(
model,
r=lora_rank, # 选择的数 > 0 ! 建议 8, 16, 32, 64, 128
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
], # 如果内存不足移除QKVO
lora_alpha=lora_rank,
use_gradient_checkpointing="unsloth", # 启用上下文调优
random_state=3407,
)
3.数据准备
格式化字符串
# 定义指定的prompt
SYSTEM_PROMPT = """
Respond in the following format:
<think>
...
</think>
<answer>
...
</answer>
"""
# 回答格式
XML_COT_FORMAT = """\
<think>
{think}
</think>
<answer>
{answer}
</answer>
"""
Dataset里一定要有prompt列,其余按照需求。
| prompt | answer |
|---|---|
| [{“role”: “system”, “content”: SYSTEM_PROMPT}, {“role”: “user”, “content”: ”What is the result of (1 + 2) * 4?"}] | [{“role”: “assistant”, “content”: “[think]The sum of 1 and 2 is 3, which we multiply by 4 to get 12.[/think][answer](1 + 2) * 4 = 12[/answer]”}] |
| prompt | ground_truth |
|---|---|
| Solve the equation 2 x + 3 = 7 2x + 3 = 7 2x+3=7. | 2 |
4.定义奖励函数
huggingface中有各种详细的介绍案例。
completions是输出的回答,不用在数据集中给出。
奖励长回答
def reward_func(completions, **kwargs):
"""奖励功能:完成时间越长,得分越高。"""
return [float(len(completion)) for completion in completions]
奖励格式回答
import re
def format_reward_func(completions, **kwargs):
"""奖励功能:检查完成是否具有特定格式。"""
pattern = r"^<think>.*?</think><answer>.*?</answer>$"
completion_contents = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, content) for content in completion_contents]
return [1.0 if match else 0.0 for match in matches]
奖励正确答案
import re
def reward_func(completions, ground_truth, **kwargs):
# 用于捕获\box{}内内容的正则表达式
matches = [re.search(r"\\boxed\{(.*?)\}", completion) for completion in completions]
contents = [match.group(1) if match else "" for match in matches]
# 如果内容与基本事实相同,奖励1,否则奖励0
return [1.0 if c == gt else 0.0 for c, gt in zip(contents, ground_truth)]
多任务奖励
例子:答案的正确性奖励+遵循格式奖励
最终用reward_funcs=[math_reward_func, coding_reward_func]结合
from datasets import Dataset
from trl import GRPOTrainer
# 定义一个同时包含数学和编码问题的数据集
dataset = Dataset.from_list(
[
{"prompt": [{"role": "system", "content": SYSTEM_PROMPT}, {"role": "system", "content": What is the result of (1 + 2) * 4?"}], "ground_truth": 12},
{"prompt": [{"role": "system", "content": SYSTEM_PROMPT}, {"role": "system", "content": What is the result of (3 + 1) * 2?"}], "ground_truth": 12},
]
)
# 当模型的答案与正确答案匹配时奖励模型
def correctness_reward_func(prompts, completions, ground_truth, **kwargs) -> list[float]:
responses = [completion[0]["content"] for completion in completions]
q = prompts[0][-1]["content"]
extracted_responses = [extract_xml_answer(r) for r in responses]
print(
"-" * 20,
f"Question:\n{q}",
f"\nAnswer:\n{answer[0]}",
f"\nResponse:\n{responses[0]}",
f"\nExtracted:\n{extracted_responses[0]}",
)
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, ground_truth)]
# 奖励模型提供数字答案
def int_reward_func(completions, **kwargs) -> list[float]:
responses = [completion[0]["content"] for completion in completions]
extracted_responses = [extract_xml_answer(r) for r in responses]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
# 奖励严格遵循指定格式的模型
def strict_format_reward_func(completions, **kwargs) -> list[float]:
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
# 同时使用特定任务的奖励功能
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=[math_reward_func, coding_reward_func],
train_dataset=dataset,
)
5.设置GRPOTrainer
from trl import GRPOConfig, GRPOTrainer
max_prompt_length = 256
training_args = GRPOConfig(
learning_rate=5e-6,
adam_beta1=0.9,
adam_beta2=0.99,
weight_decay=0.1,
warmup_ratio=0.1,
lr_scheduler_type="cosine",
optim="paged_adamw_8bit",
logging_steps=1,
per_device_train_batch_size=6,
gradient_accumulation_steps=1, # 增加到4,训练更顺畅
num_generations=6, # 内存不足时减少
max_prompt_length=max_prompt_length,
max_completion_length=max_seq_length - max_prompt_length,
# num_train_epochs = 1, # 设置为1为完整的训练运行
max_steps=250,
save_steps=250,
max_grad_norm=0.1,
report_to="none", # 可以使用 Weights & Biases
output_dir="outputs",
)
trainer = GRPOTrainer(
model=model,
processing_class=tokenizer,
reward_funcs=[
strict_format_reward_func,
int_reward_func,
correctness_reward_func,
],
args=training_args,
train_dataset=dataset,
)
6.测试模型
保存lora模型
model.save_lora("grpo_saved_lora")
用一个新问题来测试
from vllm import SamplingParams
text = tokenizer.apply_chat_template(
[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": "Calculate pi."},
],
tokenize=False,
add_generation_prompt=True,
)
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1024,
)
output = (
model.fast_generate(
text,
sampling_params=sampling_params,
lora_request=model.load_lora("grpo_saved_lora"),
)[0]
.outputs[0]
.text
)
print(output)
621

被折叠的 条评论
为什么被折叠?



