GRPO自定义奖励函数代码实现

Deepseek目前的方法仍然很有热度,比如说仅仅使用规则作为奖励指向,不关注中间的推理过程,又或者是使用GRPO代替PPO或者DPO,两者都是化繁为简的方法。


前言

比较一下当前在大模型中使用强化学习的常见算法和流程。

名称类型核心思想数据来源优化目标是否需要奖励函数是否需要人类偏好
PPO算法稳定高效地优化策略(RL)环境或奖励模型最大化期望奖励
DPO算法直接基于偏好对优化策略(无需 reward)偏好对(A 比 B 好)让好样本概率更高
GRPO算法使用排序/打分的奖励进行 RL(类似 DPO 的泛化)相对排序数据最大化奖励差异引导的策略提升
RLHF流程用人类偏好训练奖励模型 + 用 RL 优化策略人类偏好 → 奖励模型奖励最大化✅ (奖励来自人类偏好)
RLAIF流程用 AI 模型生成偏好或奖励,替代人工AI 偏好/打分奖励或偏好最大化✅/❌ 可选❌ (用 AI 代替)

GRPO:比如说同一个prompt,大模型给出了多个回答,给定了两个奖励函数,一个是生成的回答长度越长奖励越高,还有一个是回答正确了再给奖励,最终取所有回答的平均值,超过平均值的接受。基于规则选择,打分,超过平均的接受

目前流行的SFT+RL的框架有trlOpenRLHFLLama-FactoryUnsloth,看下来在Unsloth中使用trl使用GRPO有比较成熟的例子,并且可以使用Lora微调。


1.安装环境

使用以下方式安装环境和库

conda create --name unsloth_env \
    python=3.11 \
    pytorch-cuda=12.1 \
    pytorch cudatoolkit -c pytorch -c nvidia \
    -y
conda activate unsloth_env
pip install unsloth vllm

在实际使用的过程中,发现版本问题可能会造成报错。因此,推荐Unsloth 2025.3.8, Unsloth=2025.3.7,vLLM: 0.7.3,transformers:4.48.3

2.设置Unsloth

Unsloth提供了FastLanguageModel类,集成了转换器和Unsloth优化。

from unsloth import FastLanguageModel
import torch

max_seq_length = 1024  # 增加推理长度
lora_rank = 32  # 更大的秩 = 更聪明, 但更慢

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="model/Meta-Llama-3.1-8B-Instruct",
    max_seq_length=max_seq_length,
    load_in_4bit=True,  # 如果是LoRA 16bit就改成False
    fast_inference=True,  # 使得vLLM更快推理
    max_lora_rank=lora_rank,
    gpu_memory_utilization=0.6,  # 减少内存不足
)

model = FastLanguageModel.get_peft_model(
    model,
    r=lora_rank,  # 选择的数 > 0 ! 建议 8, 16, 32, 64, 128
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
    ],  # 如果内存不足移除QKVO
    lora_alpha=lora_rank,
    use_gradient_checkpointing="unsloth",  # 启用上下文调优
    random_state=3407,
)

3.数据准备

格式化字符串

# 定义指定的prompt
SYSTEM_PROMPT = """
Respond in the following format:
<think>
...
</think>
<answer>
...
</answer>
"""

# 回答格式
XML_COT_FORMAT = """\
<think>
{think}
</think>
<answer>
{answer}
</answer>
"""

Dataset里一定要有prompt列,其余按照需求。

promptanswer
[{“role”: “system”, “content”: SYSTEM_PROMPT}, {“role”: “user”, “content”: ”What is the result of (1 + 2) * 4?"}][{“role”: “assistant”, “content”: “[think]The sum of 1 and 2 is 3, which we multiply by 4 to get 12.[/think][answer](1 + 2) * 4 = 12[/answer]”}]
promptground_truth
Solve the equation 2 x + 3 = 7 2x + 3 = 7 2x+3=7.2

4.定义奖励函数

huggingface中有各种详细的介绍案例。
completions是输出的回答,不用在数据集中给出。

奖励长回答

def reward_func(completions, **kwargs):
    """奖励功能:完成时间越长,得分越高。"""
    return [float(len(completion)) for completion in completions]

奖励格式回答

import re

def format_reward_func(completions, **kwargs):
    """奖励功能:检查完成是否具有特定格式。"""
    pattern = r"^<think>.*?</think><answer>.*?</answer>$"
    completion_contents = [completion[0]["content"] for completion in completions]
    matches = [re.match(pattern, content) for content in completion_contents]
    return [1.0 if match else 0.0 for match in matches]

奖励正确答案

import re

def reward_func(completions, ground_truth, **kwargs):
    # 用于捕获\box{}内内容的正则表达式
    matches = [re.search(r"\\boxed\{(.*?)\}", completion) for completion in completions]
    contents = [match.group(1) if match else "" for match in matches]
    # 如果内容与基本事实相同,奖励1,否则奖励0
    return [1.0 if c == gt else 0.0 for c, gt in zip(contents, ground_truth)]

多任务奖励

例子:答案的正确性奖励+遵循格式奖励
最终用reward_funcs=[math_reward_func, coding_reward_func]结合

from datasets import Dataset
from trl import GRPOTrainer

# 定义一个同时包含数学和编码问题的数据集
dataset = Dataset.from_list(
    [
        {"prompt": [{"role": "system", "content": SYSTEM_PROMPT}, {"role": "system", "content": What is the result of (1 + 2) * 4?"}], "ground_truth": 12},
       {"prompt": [{"role": "system", "content": SYSTEM_PROMPT}, {"role": "system", "content": What is the result of (3 + 1) * 2?"}], "ground_truth": 12},
    ]
)

# 当模型的答案与正确答案匹配时奖励模型
def correctness_reward_func(prompts, completions, ground_truth, **kwargs) -> list[float]:
    responses = [completion[0]["content"] for completion in completions]
    q = prompts[0][-1]["content"]
    extracted_responses = [extract_xml_answer(r) for r in responses]
    print(
        "-" * 20,
        f"Question:\n{q}",
        f"\nAnswer:\n{answer[0]}",
        f"\nResponse:\n{responses[0]}",
        f"\nExtracted:\n{extracted_responses[0]}",
    )
    return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, ground_truth)]

# 奖励模型提供数字答案
def int_reward_func(completions, **kwargs) -> list[float]:
    responses = [completion[0]["content"] for completion in completions]
    extracted_responses = [extract_xml_answer(r) for r in responses]
    return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]

# 奖励严格遵循指定格式的模型
def strict_format_reward_func(completions, **kwargs) -> list[float]:
    pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
    responses = [completion[0]["content"] for completion in completions]
    matches = [re.match(pattern, r) for r in responses]
    return [0.5 if match else 0.0 for match in matches]
    
# 同时使用特定任务的奖励功能
trainer = GRPOTrainer(
    model="Qwen/Qwen2-0.5B-Instruct",
    reward_funcs=[math_reward_func, coding_reward_func],
    train_dataset=dataset,
)

5.设置GRPOTrainer

from trl import GRPOConfig, GRPOTrainer

max_prompt_length = 256

training_args = GRPOConfig(
    learning_rate=5e-6,
    adam_beta1=0.9,
    adam_beta2=0.99,
    weight_decay=0.1,
    warmup_ratio=0.1,
    lr_scheduler_type="cosine",
    optim="paged_adamw_8bit",
    logging_steps=1,
    per_device_train_batch_size=6,
    gradient_accumulation_steps=1,  # 增加到4,训练更顺畅
    num_generations=6,  # 内存不足时减少
    max_prompt_length=max_prompt_length,
    max_completion_length=max_seq_length - max_prompt_length,
    # num_train_epochs = 1, # 设置为1为完整的训练运行
    max_steps=250,
    save_steps=250,
    max_grad_norm=0.1,
    report_to="none",  # 可以使用 Weights & Biases
    output_dir="outputs",
)

trainer = GRPOTrainer(
    model=model,
    processing_class=tokenizer,
    reward_funcs=[
        strict_format_reward_func,
        int_reward_func,
        correctness_reward_func,
    ],
    args=training_args,
    train_dataset=dataset,
)

6.测试模型

保存lora模型

model.save_lora("grpo_saved_lora")

用一个新问题来测试

from vllm import SamplingParams

text = tokenizer.apply_chat_template(
    [
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": "Calculate pi."},
    ],
    tokenize=False,
    add_generation_prompt=True,
)

sampling_params = SamplingParams(
    temperature=0.8,
    top_p=0.95,
    max_tokens=1024,
)
output = (
    model.fast_generate(
        text,
        sampling_params=sampling_params,
        lora_request=model.load_lora("grpo_saved_lora"),
    )[0]
    .outputs[0]
    .text
)

print(output)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值