DeepSeek-R1中训练使用的GRPO奖励函数详细讲解 一、GRPO优化目标详解 相比较PPO,GRPO(Group Relative Policy Optimization)的训练成本会更低,更简单。它通过最大化下面这个公式的目标来优化模型 ,来自原论文 DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning: 1.先理清楚参数的含义: 是神经网络, 表示网络参数. 表示组数,在训练时模型会输出 个response内容,一同计算loss. 是prompt。 表示第 个response。 是输入为 时, 的概率分布。 是参数