训练过程中定义了损失函数,激活函数,优化器,并进行了测试,计算了测试准确率,并用tensorboard进行可视化,数据集采用torchvision的CIFAR10,并运用GPU训练
🚀代码如下:
train.py
from torch import nn
import torch
import torchvision
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, ReLU
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from module import *
# 准备数据集
train_data = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=torchvision.transforms.ToTensor(),
download=True)
val_data = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size = len(train_data)
val_data_size = len(val_data)
# 加载数据集
train_loader = DataLoader(train_data, batch_size=64)
val_loader = DataLoader(val_data, batch_size=64)
# 搭建神经网络-----10分类
Mynn = deep_nn()
Mynn = Mynn.cuda() # 运用gpu训练只有网络模型,损失函数,数据部分
# 定义损失函数交叉熵
loss_fc = nn.CrossEntropyLoss()
loss_fc = loss_fc.cuda()
# 定义优化器SGD随机梯度下降
opmiz = torch.optim.SGD(Mynn.parameters(), lr=0.01)
# 设置训练参数
step_train = 0
step_val = 0
# 训练轮数
epochs = 10
# tensorboard查看训练过程
writer = SummaryWriter('logs')
for i in range(epochs):
print("第 {} 轮训练开始".format(i + 1))
# 训练开始
Mynn.train() # 设置为训练模式,如果网络中有dropout、Batchnorm会发挥作用
for data in train_loader:
imgs, taegets = data
imgs = imgs.cuda()
taegets = taegets.cuda()
outputs = Mynn(imgs)
res_loss = loss_fc(outputs, taegets)
opmiz.zero_grad()
# 反向传播
res_loss.backward()
opmiz.step()
step_train += 1
if step_train % 100 == 0:
print("训练次数 {} 损失值 {}".format(step_train, res_loss))
writer.add_scalar(tag='train_loss', scalar_value=res_loss, global_step=step_train)
# 测试开始
# 设置为测试模式,如果网络中有dropout、Batchnorm会发挥作用
Mynn.eval()
val_total_accu = 0 # 定义每一轮测试准确率
val_total_loss = 0 # 定义每一轮测试损失
# 无需调优
with torch.no_grad():
# 测试
for data in val_loader:
imgs, targets = data
imgs = imgs.cuda()
targets = targets.cuda()
outputs = Mynn(imgs)
res_loss = loss_fc(outputs, targets)
val_total_loss += res_loss.item() # 计算每一轮损失
val_accu = (outputs.argmax(1) == targets).sum() # 计算每次正确预测的格式
val_total_accu += val_accu
print("第 {} 轮测试集正确率 {}".format(i + 1, val_total_accu / val_data_size))
writer.add_scalar(tag='val_Loss', scalar_value=val_total_loss, global_step=step_val)
writer.add_scalar(tag='test_accu', scalar_value=val_total_accu / val_data_size, global_step=step_val)
step_val += 1
print("测试集loss {} ".format(val_total_loss))
# 保存每一轮训练模型
# torch.save(Mynn, 'epoch_{}.pt'.format(i+1))
writer.close()
module.py
import torch
from torch import nn
from torch.nn import Conv2d, ReLU, MaxPool2d, Flatten, Linear
class deep_nn(nn.Module):
def __init__(self):
super().__init__()
# 第一个卷积层输入通道为3,输出通道为32,卷积核5×5,计算得padding=2
self.conv1 = Conv2d(3, 32, 5, padding=2)
# 引入激活函数
self.relu = ReLU()
# 池化层不改变通道数,默认不填充
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.liner1 = Linear(1024, 64)
self.liner2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.relu(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.liner1(x)
x = self.liner2(x)
return x
🚀训练过程
🔥可以看出,损失都在不断减少,而准确率在升高