深入理解LongAdder、DoubleAdder的实现原理
本文主要通过LongAdder和DoubleAdder的源码,讲述一下其实现原理。通过LongAdder和DoubleAdder的源码可知。两者都是继承了Striped64的类。下面我们将通过源码的形式讲述一下这三个类都做了哪些事情。
1: Striped64
首先,我们看下Striped64这个类,做了哪些功能。
1.1 Cell类(内部类)
@sun.misc.Contended static final class Cell {
volatile long value;
Cell(long x) {
value = x;
}
final boolean cas(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long valueOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> ak = Cell.class;
valueOffset = UNSAFE.objectFieldOffset
(ak.getDeclaredField("value"));
} catch (Exception e) {
throw new Error(e);
}
}
}
1: @sun.misc.Contended 注解作用?
在前面的文章中,我们讲到
缓存行锁能够代替总线锁的唯一条件:变量已经在缓存行中
。问题1: 我们思考一个问题,那一个数据可以分散在同一个缓存行中吗?
答案是否定的。如果一个数据分散在一个缓存行中,那么CPU加锁就没有作用了。那么 @sun.misc.Contended 注解就是将该变量数据强制刷到不同的缓存行中。
问题2: 如果能够做到强制刷到不同的缓存行中?
根据缓存行的长度,变量不足长度的数据,进行强制填充。将缓存行填充完整。
问题3: 如何填充?
2: Cell类最终是为了解决什么问题?
主要是为了
降低了CAS的范围
。
如上图,线程如果CAS操作一直不成功的时候,就会导致CPU一直空转。那么我们是不是可以思考一下,将int数据进行打散,分成若干个值,分别计算,最好将值进行汇总。变成如下图形式:
这些,CPU的竞争降低了很多,
降低了CAS的范围
。采用的思想就是降低锁粒度,提供并发性能
。
2: Striped64类
abstract class Striped64 extends Number {
/**
* cell数组。当非空时,size是2的幂
*/
transient volatile Cell[] cells;
/**
* 基础值,当没有竞争的时候使用,使用cas更新
*/
transient volatile long base;
/**
* cas操作base属性值
*/
final boolean casBase(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, BASE, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long BASE;
private static final long CELLSBUSY;
private static final long PROBE;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> sk = Striped64.class;
BASE = UNSAFE.objectFieldOffset
(sk.getDeclaredField("base"));
CELLSBUSY = UNSAFE.objectFieldOffset
(sk.getDeclaredField("cellsBusy"));
Class<?> tk = Thread.class;
PROBE = UNSAFE.objectFieldOffset
(tk.getDeclaredField("threadLocalRandomProbe"));
} catch (Exception e) {
throw new Error(e);
}
}
}
2: LongAdder
public class LongAdder extends Striped64 implements Serializable {
/**
* Adds the given value.
*
* @param x the value to add
*/
public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
if ((as = cells) != null || !casBase(b = base, b + x)) {
/**
* 能够进入的两种情况
* 1: 如果当前数组不为空,或者casBase不成功的时候,也就是说存在竞争的情况下
* 2: 数据为空,casBas成功,不存在竞争,直接casBase
*/
boolean uncontended = true; //是否竞争标识: 控制多个线程是否竞争,同一个cell
if (as == null || (m = as.length - 1) < 0 ||
(a = as[getProbe() & m]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))//如果内部cell没有初始化,退回到原来的cas
// 如果cell没有初始化,则对cell进行初始化。
longAccumulate(x, null, uncontended);
}
}
/**
* 所有cell值进行汇总求和,额外加上base
*/
public long sum() {
Cell[] as = cells; Cell a;
long sum = base;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
}
final void longAccumulate(long x, LongBinaryOperator fn,
boolean wasUncontended) {
int h;
if ((h = getProbe()) == 0) {
ThreadLocalRandom.current(); // force initialization
h = getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
for (;;) {
Cell[] as; Cell a; int n; long v;
// 如果cells数组不为null,并且数组已经存在值
if ((as = cells) != null && (n = as.length) > 0) {
// 当线程访问的下标没有初始化,则进行初始化
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
Cell r = new Cell(x); // Optimistically create
if (cellsBusy == 0 && casCellsBusy()) {
boolean created = false;
try { // Recheck under lock
Cell[] rs; int m, j;
if ((rs = cells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // Slot is now non-empty
}
}
collide = false;
}//没有发生竞争,设置成true
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
// 再次尝试一下是否能够自旋成功
else if (a.cas(v = a.value, ((fn == null) ? v + x :
fn.applyAsLong(v, x))))
break;
else if (n >= NCPU || cells != as)
collide = false; // At max size or stale
else if (!collide)
collide = true;
//继续找个cell,进行自旋
else if (cellsBusy == 0 && casCellsBusy()) {
try {
if (cells == as) { //进行扩容
Cell[] rs = new Cell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
cells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = advanceProbe(h);
} //casCellsBusy() 设置一个标志位,只允许一个线程进来
else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
//cell数组为空,需要初始化
boolean init = false;
try { // Initialize table
if (cells == as) {
Cell[] rs = new Cell[2];
rs[h & 1] = new Cell(x);
cells = rs;
init = true;
}
} finally {
cellsBusy = 0; //释放锁
}
if (init)
//如果初始化了,则退出循环
break;
}
else if (casBase(v = base, ((fn == null) ? v + x : //默认累加
fn.applyAsLong(v, x))))
//只允许一个线程对cell数组 初始化。使用casBase 来控制多个线程并发初始化,使用cas操作保证只有一个线程能够成功。所以只有一个线程能够创建cell数组,其他线程失败。不能够让其他线程做无谓的自旋,
break;
}
}
总结
当引入cell数组时,本身cell数组就是并发的,我们需要保证操作cell数组的原子性,引入单变量 cellBusy来cas用一个单指令的原语指令来保证多个指令流的原子性。于是当 cellBusy时,其他线程不能操作cell数组,那么只能循环重试,而我们又不想要CPU空转,于是让线程退回CAS base变量。
DoubleAdder类
通过阅读DoubleAdder的代码之后,你会发现DoubleAdder和LongAdder的代码几乎一样,所以两者的原理都是一样的,这里就不对DoubleAdder 的代码一行行注释了,大家自行阅读。
以上就是本次分享的主要的内容。