人工智能算法之自适应遗传算法

人工智能算法之自适应遗传算法

在这里插入图片描述

自适应遗传算法是对传统遗传算法的改进,主要通过调整遗传操作的控制参数(如交叉率和变异率)来提高算法的性能。在传统遗传算法中,交叉率和变异率通常是固定的,但不同问题和不同阶段的优化过程中,最佳的交叉率和变异率并不总是相同。因此,自适应遗传算法通过动态调整这些参数来增强算法的适应性,从而提高全局搜索和局部搜索的效率,避免早熟收敛问题。

自适应遗传算法的关键思想

在传统遗传算法中,交叉率 pc 和变异率 pm 是固定值。但实际问题中,不同的阶段可能需要不同的参数值。例如,初期搜索时,需要较高的交叉率和变异率来增加探索范围,而在后期接近最优解时,需要较低的变异率来进行局部优化。因此,自适应遗传算法的核心思想是根据种群的适应度值动态调整交叉率和变异率。

自适应遗传算法的核心公式

  1. 自适应交叉率公式

    自适应交叉率根据个体的适应度值进行调整,如果两个个体的适应度较差,则使用较高的交叉率增加探索范围;如果两个个体的适应度较好,则降低交叉率以保留优良个体。交叉率的公式可以表示为:

    在这里插入图片描述

    其中:

    • f1 为个体的适应度;
    • favg为种群的平均适应度;
    • pc1 和 pc2 是两个预定义的交叉率阈值,通常 pc1 > pc2,确保劣质个体有较高的交叉率,优秀个体有较低的交叉率。
  2. 自适应变异率公式

    变异率同样根据个体的适应度进行动态调整。适应度较差的个体采用较高的变异率,适应度较高的个体采用较低的变异率,以保护优秀基因。变异率的公式可以表示为:

    在这里插入图片描述

    其中:

    • pm1和 pm2是预定义的变异率阈值,通常 pm1 < pm2,确保优秀个体有较低的变异率,劣质个体有较高的变异率。
  3. 自适应控制参数的另一种改进形式

    根据适应度值的相对表现,动态调整交叉率和变异率:

    在这里插入图片描述

    其中:

    • pc(i) 和 pm(i) 分别表示第 i 个个体的交叉率和变异率;
    • f(i) 是第 i 个个体的适应度;
    • fmin和 favg分别是种群的最小适应度和平均适应度;
    • pcmax、pcmin、pm^max 和 pm^min 是预定义的最大和最小交叉率、变异率。

自适应遗传算法的特点

  • 自适应调整交叉率和变异率:与固定的参数不同,自适应遗传算法可以根据当前种群的适应度表现动态调整交叉率和变异率,从而避免早熟收敛,并提高算法的局部搜索能力。

  • 全局搜索与局部搜索平衡:自适应遗传算法在全局搜索和局部搜索之间取得了平衡。在搜索的早期,较高的交叉率和变异率有助于探索整个搜索空间;在搜索的后期,较低的交叉率和变异率有助于集中在局部搜索以找到最优解。

  • 适应动态变化的环境:自适应遗传算法能够随着问题的变化调整其控制参数,因此特别适合动态优化问题和多目标优化问题。

自适应遗传算法的实现

下面我们将基于上述理论实现一个自适应遗传算法,并解决一个函数优化问题。目标是最大化一个简单的适应度函数 f(x) = x^2,并通过动态调整交叉率和变异率来提高算法性能。

自适应遗传算法的Python实现
import random

# 定义适应度函数
def fitness(individual):
    return individual ** 2

# 初始化种群
def initialize_population(pop_size, gene_length):
    return [random.randint(0, 2 ** gene_length - 1) for _ in range(pop_size)]

# 轮盘赌选择操作
def selection(population, fitness_values):
    total_fitness = sum(fitness_values)
    selection_probs = [f / total_fitness for f in fitness_values]
    return random.choices(population, weights=selection_probs, k=len(population))

# 自适应交叉操作
def adaptive_crossover(parent1, parent2, gene_length, fitness_parent1, fitness_parent2, avg_fitness, pc_max=0.9, pc_min=0.6):
    if fitness_parent1 > avg_fitness and fitness_parent2 > avg_fitness:
        pc = pc_min
    else:
        pc = pc_max
    
    if random.random() < pc:
        point = random.randint(1, gene_length - 1)
        mask = (1 << point) - 1
        offspring1 = (parent1 & mask) | (parent2 & ~mask)
        offspring2 = (parent2 & mask) | (parent1 & ~mask)
        return offspring1, offspring2
    return parent1, parent2

# 自适应变异操作
def adaptive_mutation(individual, gene_length, fitness_individual, avg_fitness, pm_max=0.1, pm_min=0.01):
    if fitness_individual > avg_fitness:
        pm = pm_min
    else:
        pm = pm_max
    
    if random.random() < pm:
        mutation_point = random.randint(0, gene_length - 1)
        individual ^= (1 << mutation_point)
    return individual

# 遗传算法
def adaptive_genetic_algorithm(pop_size, gene_length, generations):
    population = initialize_population(pop_size, gene_length)
    
    for generation in range(generations):
        fitness_values = [fitness(ind) for ind in population]
        avg_fitness = sum(fitness_values) / len(fitness_values)
        
        # 选择操作
        selected_population = selection(population, fitness_values)
        
        # 交叉操作
        next_population = []
        for i in range(0, len(selected_population), 2):
            parent1, parent2 = selected_population[i], selected_population[i+1]
            offspring1, offspring2 = adaptive_crossover(parent1, parent2, gene_length, fitness(parent1), fitness(parent2), avg_fitness)
            next_population.append(offspring1)
            next_population.append(offspring2)
        
        # 突变操作
        population = [adaptive_mutation(ind, gene_length, fitness(ind), avg_fitness) for ind in next_population]
        
        # 找到当前最好的个体
        best_individual = max(population, key=fitness)
        print(f"Generation {generation + 1}: Best individual: {best_individual}, Fitness: {fitness(best_individual)}")
    
    return best_individual

# 参数设置
pop_size = 10   # 种群大小
gene_length = 5 # 基因长度(用于表示范围 0-31 的整数)
generations = 20 # 迭代次数

# 运行自适应遗传算法
best_individual = adaptive_genetic_algorithm(pop_size, gene_length, generations)
print(f"The best individual found is: {best_individual}, Fitness: {fitness(best_individual)}")

代码解读:

  1. 初始化种群:随机生成若干个体,每个个体是一个表示整数的基因序列。

  2. 适应度评估:通过目标函数 ( f(x) = x^2 ) 计算每个个体的适应度。

  3. 自适应交叉:根据个体的适应度值,动态调整交叉率。较差的个体采用较高的交叉率以增加探索范围,而优秀个体采用较低的交叉率以保护优质基因。

  4. 自适应变异:类似地,变异率根据个体适应度进行动态调整,确保算法在保持多样性的同时,不会破坏优秀个体。

  5. 种群进化:通过选择、交叉和变异操作,不断迭代更新种群,直到找到最优解或达到预设的代数。

自适应遗传算法的优势

  1. 适应问题变化:自适应遗传算法可以根据问题的不同阶段动态调整搜索策略,使其在不同阶段都表现出良好的优化能力。

  2. 避免早熟收敛:自适应变异率和交叉率在优化过程中不断调整,有效避免了遗传算法的早熟收敛问题。

  3. 提高搜索效率:通过动态调整遗传操作,自适应遗传算法在探索全局最优解和局部搜索之间取得了良好的平衡,提高了搜索效率。

总结

自适应遗传算法通过动态调整交叉率和变异率,增强了算法的适应性,特别适用于多目标优化问题和动态环境。相比传统遗传算法,自适应遗传算法在优化过程中表现出更好的全局搜索和局部搜索平衡能力,有助于提高优化精度和收敛速度。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lucas在澳洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值