numpy常见的函数与pandas的series类型

2.numpy常见的函数

2.1 条件判断函数

np.all(指定条件)
所有的元素都必须满足指定条件

np.any(指定条件,axis=)
至少有一个元素满足指定条件
axis=1表示对每列
axis=0表示对每行

2.2 数组的增删改

np.append(数组,添加的数据)
可同时增加多个,以列表的形式
多维数组增加时,输出会变成一维数组

np.insert(数组,插入位置,插入数据)
插入的数据与数组数据类型一致
多维数组插入数据时,如不指定行列,则输出一维数组
指定行列时,插入的数据需要与行列的数量一致,数据类型应当为数组

np.concatenate((数组1,数组2),axis=)
合并数组,合并时保证合并指定的行列的数量一致

np.delete(数组,删除位置,指定行列)

pandas

1.pandas的基础数据结构

import numpy as np
import pandas as pd

1.1 series类型

有两部分组成,一部分称为索引(index),一部分为数据

类比为以为数组

1.1.1 创建series

pd.Series()
不填内容,则创建空的series

pd.Series(range(10),index=list('asdfghjklm'))
索引的列表数据数量应该与数据数量相同
输出 a  0
	s  1
	d  2
	f  3
	g  4
	h  5
	j  6
	k  7
	l  8
	m  9
	dtype:int64
在创建series的時候,创建的数据可以是列表,也可以数组。索引是自动创建的,也可以直接指定,但指定的索引的个数必须与数据保持一致

1.1.2 字典的创建和值索引的获取

ser3 = pd.Series({'name':'张三','age':18})
输出
name    张三
age     18
dtype: object

可以通过字典的方式来创建,字典的键名是索引,字典的键值是数据

print(ser3.index)
print(ser3.values)
输出
Index(['name', 'age'], dtype='object')
['张三' 18]

1.1.3 series对象的取值

ser[取值位置]
ser[起始位置:结束位置:步长]


# 可以通过位置取值,也可以通过索引取值
# 通过行索引进行取值,下包取值是左闭右开的,起始位置:结束位置:步长
# 如果通过索引取值,是左闭右闭的,起始位置:结束位置:步长
# 如果行索引是默认的数字形式,则根据索引取值

条件取值

ser1[ser1>5]
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页