import pandas as pd
import numpy as np
data=pd.read_excel(r'meal_order_detail.xlsx')
print(data.shape)
(2779, 19)
print(data.columns)
Index(['detail_id', 'order_id', 'dishes_id', 'logicprn_name',
'parent_class_name', 'dishes_name', 'itemis_add', 'counts', 'amounts',
'cost', 'place_order_time', 'discount_amt', 'discount_reason',
'kick_back', 'add_inprice', 'add_info', 'bar_code', 'picture_file',
'emp_id'],
dtype='object')
一、时间处理:
print(data.dtypes)
detail_id int64
order_id int64
dishes_id int64
logicprn_name float64
parent_class_name float64
dishes_name object
itemis_add int64
counts int64
amounts int64
cost float64
place_order_time datetime64[ns]
discount_amt float64
discount_reason float64
kick_back float64
add_inprice int64
add_info float64
bar_code float64
picture_file object
emp_id int64
dtype: object
为了展示字符串类型转标准时间格式,先将原来的标准时间转字符串
place_order_time=data['place_order_time'].astype('str')
print(place_order_time)
0 2016-08-01 11:05:36
1 2016-08-01 11:07:07
2 2016-08-01 11:07:40
3 2016-08-01 11:11:11
4 2016-08-01 11:11:30
...
2774 2016-08-10 21:56:24
2775 2016-08-10 21:56:48
2776 2016-08-10 22:01:52
2777 2016-08-10 22:03:58
2778 2016-08-10 22:04:30
Name: place_order_time, Length: 2779, dtype: object
1、将字符串类型转为标准时间格式
data['place_order_time']=pd.to_datetime(place_order_time)
print(data.head())
detail_id order_id dishes_id logicprn_name parent_class_name \
0 2956 417 610062 NaN NaN
1 2958 417 609957 NaN NaN
2 2961 417 609950 NaN NaN
3 2966 417 610038 NaN NaN
4 2968 417 610003 NaN NaN
dishes_name itemis_add counts amounts cost place_order_time \
0 蒜蓉生蚝 0 1 49 NaN 2016-08-01 11:05:36
1 蒙古烤羊腿 0 1 48 NaN 2016-08-01 11:07:07
2 大蒜苋菜 0 1 30 NaN 2016-08-01 11:07:40
3 芝麻烤紫菜 0 1 25 NaN 2016-08-01 11:11:11
4 蒜香包 0 1 13 NaN 2016-08-01 11:11:30
discount_amt discount_reason kick_back add_inprice add_info bar_code \
0 NaN NaN NaN 0 NaN NaN
1 NaN NaN NaN 0 NaN NaN
2 NaN NaN NaN 0 NaN NaN
3 NaN NaN NaN 0 NaN NaN
4 NaN NaN NaN 0 NaN NaN
picture_file emp_id
0 caipu/104001.jpg 1442
1 caipu/202003.jpg 1442
2 caipu/303001.jpg 1442
3 caipu/105002.jpg 1442
4 caipu/503002.jpg 1442
2、时间类型提取
ser.dt.时间属性:
year、month、day、hour、minute、second、
date(日期)、week(一年中第几个星期)、
quarter(第几个季节)、dayofyear(一年中的第几天)、
dayofweek(一周的第几天,0开始)、is_leap_year(是否是闰年,返回布尔值)、
daysinmonth(这个月有多少天)、
month_name()(月份名)、day_name()(星期名称)
data['year']=data['place_order_time'].dt.year
print(data['place_order_time'].head())
data['place_order_time'].dt.daysinmonth
0 2016-08-01 11:05:36
1 2016-08-01 11:07:07
2 2016-08-01 11:07:40
3 2016-08-01 11:11:11
4 2016-08-01 11:11:30
Name: place_order_time, dtype: datetime64[ns]
0 31
1 31
2 31
3 31
4 31
..
2774 31
2775 31
2776 31
2777 31
2778 31
Name: place_order_time, Length: 2779, dtype: int64
3、时间运算
(1)标准时间加减运算
time1=

最低0.47元/天 解锁文章

2万+

被折叠的 条评论
为什么被折叠?



