学习教材:《电机学》(汤蕴璆)
第一章 磁路(二)
前言
在分析和计算磁场时,常常要用到两条基本定律,一条是安培环路定律,另一条是磁通连续性定律。将这两条定律应用在磁路,可得磁路的欧姆定律和磁路的基尔霍夫第一和第二定律。
二、磁路的基本定律
1、安培环路定律
沿着任意一条闭合回线,磁场强度
的线积分值
恰好等于该闭合回线所包含的总电流值
(代数和),这就是安培环路定律。用公式表达有:
该公式的提出是通过实验总结,在实验中观察到载流导线周围存在环形磁场,且磁场的强度和电流的分布直接相关。磁场强度
沿闭合路径的积分等于该路径包围的总电流。
遵循右手螺旋定则,右手握住导线,拇指指向电流方向,四指弯曲的方向即为磁场强度
的环绕方向。
什么是线积分?线积分就是计算矢量场在曲线上的“总和”。是一个矢量场,空间中的每一点
都有大小和方向。
2、磁路的欧姆定律
用一个无分支的铁心磁路为例,铁心上绕有匝道线圈,线圈中通有电流
,铁心横截面积为A,磁路的平均长度为
,铁心的磁导率为
。若不计漏磁通,即认为所有磁通都被约束在铁心之内,并认为各截面内的磁场都是均匀分布的,
(和
)的方向总是沿着回线
的切线方向且大小处处相等。如下图:
由安培环路定律可得:(已假设
沿回线大小处处相等)。
由于各截面内的磁通密度为均匀分布,且垂直于各截面,故磁通量
将等于磁通密度
乘以面积
,即:
或
又有: ,可以推出:
我们把作用在铁心磁路上的安匝数称为磁路的磁动势,,单位为
。
把定义为磁阻
,单位为
。
磁阻的倒数定义为磁导,
,单位为
或
(亨)。
因此有磁路中的欧姆定律:,表示作用在磁路上的磁动势
(比拟为电路中的电动势
)等于磁路内的磁通量
(比拟为电路中的电流
)乘以磁阻
(比拟为电路中的电阻
)。
从磁阻
的表达式(
)可见,
与磁路的平均长度
成正比,与磁路的截面积
及所用材料的磁导率
成反比,这与导体的电阻公式相似。但需要注意的是,铁磁材料的磁导率
不是一个常值,而是随着磁路中的磁通密度的大小而变化。因此磁路中的磁通量
不是随着磁动势
的增大而正比增大,或者说
与
之间不是线性关系,这种情况称为磁路是非线性的。
3、磁通连续性定律
穿出(或进入)任一闭合曲面的总磁通量恒等于零(或者说,进入任一闭合曲面的磁通量恒等于穿出该闭合曲面的磁通量),这就是磁通连续性定律,其数学表达式为:
式中,的方向规定为闭合曲面的外法线方向。
4、磁路的基尔霍夫第一定律
如果铁心磁路不是一个简单回路,而是带有并联分支的分支磁路,如下图所示。当中间铁心柱加有磁动势时,磁通的路径将如图中虚线所示。如令穿出闭合面
的磁通为正,进入闭合面的磁通为负,根据磁通连续性定律,就有:
或
比拟于电路中基尔霍夫定律,磁路的基尔霍夫第一定律为:流过节点(闭合面)的磁通代数和等于流出节点(闭合面)的磁通代数和。
5、磁路的基尔霍夫第二定律
电机和变压器的磁路通常由数段不同截面、不同铁磁材料的铁心组成,磁路中还可能含有气隙。磁路计算时,总是把整个磁路分为若干段,每段为同一种材料、且具有相同的截面积,从而段内磁通密度处处相等、磁场强度也处处相等,然后用安培环路定律计算出每段磁路中所需的磁动势,最后求得整个闭合磁路所需的总磁动势。如下图所示磁路由三段组成,其中1和2为截面不同(分别为和
)的两段铁磁材料,第三段为气隙。若铁心上所加的励磁磁动势为
,根据安培环路定律(磁路的欧姆定律)可得:
式中, 和
分别是1、2两段铁心的平均长度,
为气隙长度,
。
、
分别为1、2段铁心内的磁场强度,
为气隙内的磁场强度,
。
是第
段磁路单位长度上的磁位降,
是第
段长度上的磁位降,
是作用在总磁路上的总磁动势。
类比与电路中的基尔霍夫第二定律,磁路的基尔霍夫第二定律为:作用在任何闭合磁路的总磁动势恒等于各段磁路中磁位降的代数和。
磁路和电路的比拟仅是一种数学形式上的类比,而不是物理本质的相似。
受个人能力所限,难免存在疏漏,诚盼斧正。