学习教材:《电机学》(汤蕴璆)
第一章 磁路(一)
前言
电机的工作原理都基于电磁感应定律,磁场为耦合场,磁场的强弱和分布关系到电机的性能,并且还决定电机的体积和重量。
一、电磁感应定律(法拉利定律)
放在变化磁通量中的导体,会产生电动势,此电动势称为感应电动势或感生电动势。若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)。
电路中感应电动势的大小与穿过该电路的磁通量变化率成正比,即:
ϵ
=
−
n
Δ
Φ
Δ
t
\epsilon=-n\frac{\Delta \Phi}{\Delta t}
ϵ=−nΔtΔΦ
ϵ
\epsilon
ϵ为感应电动势,n为线圈匝数,
Δ
ϕ
\Delta \phi
Δϕ为磁通量变化量,负号表示感应电动势的方向遵循楞次定律。
其中,动生电动势:导体切割磁感线时产生,公式为
ϵ
=
B
l
v
s
i
n
θ
\epsilon=Blvsin\theta
ϵ=Blvsinθ,方向由右手定则判断。
感生电动势:由磁场变化引起,公式为
ϵ
=
−
n
Δ
B
Δ
t
S
\epsilon=-n\frac{\Delta B}{\Delta t}S
ϵ=−nΔtΔBS。
磁场强度、磁导率、磁通密度(磁感应强度)、磁通量
设在匀强磁场中又一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。在匀强磁场中,磁感应强度(B)与垂直磁场方向的面积(S)的乘积,叫作穿过这个面的磁通量(Φ),简称磁通:
Φ
=
B
S
。
Φ=BS。
Φ=BS。
磁场强度是描述磁场性质的辅助量,定义为磁感应强度(B)与介质磁导率(μ)的比值:
H
=
B
μ
H=\frac{B}{\mu}
H=μB
H
H
H(磁场强度),描述磁场对电流和磁荷的驱动能力,是个辅助量,与介质无关,由电流分布决定。典型应用有:磁路计算、安培环路定理。
μ
\mu
μ(介质磁导率)表征介质对磁场的响应能力。
B
B
B(磁感应强度/磁通密度),反映磁场对运动电荷的实际作用力,由H和介质共同决定。典型应用有:电磁力计算、磁通量分析。
ϕ
\phi
ϕ(磁通),表示垂直穿过某一面积的磁感线总量。
单位及量纲计算
如何将磁场中的基本物理量联系起来,理解基本的物理定义以及进行量纲计算可能可以加深我们的理解。
H
H
H(磁场强度)的单位是
A
/
m
A/m
A/m(安培/米)。
μ
\mu
μ(介质绝对磁导率)的单位为
H
/
m
H/m
H/m(亨利/米)。
B
B
B(磁感应强度),单位为
T
T
T(特斯拉)。
ϕ
\phi
ϕ(磁通),单位为
W
b
Wb
Wb(韦伯)。
其中,
1
H
=
1
V
s
A
1H=\frac{1Vs}{A}
1H=A1Vs,其中
H
H
H(亨利)是电感的单位,电路中电流每秒变化1安培,若产生的自感电动势为1伏特,则该电路的电感b被定义为1亨利。即:
L
=
−
U
d
I
d
t
L=-\frac{U}{\frac{dI}{dt}}
L=−dtdIU,由定义式可知:
1
H
=
1
V
1
A
1
s
=
1
V
s
A
1H=\frac{1V}{\frac{1A}{1s}}=\frac{1Vs}{A}
1H=1s1A1V=A1Vs
虽然亨利是标识电感量的单位,但磁导率可以看作是电感量的磁性对应。电感
L
L
L的定义涉及磁通量
ϕ
\phi
ϕ与电流
I
I
I的关系:
L
=
ϕ
I
=
μ
N
2
A
l
(
长直线螺线管公式
)
。
L=\frac{\phi}{I}=\frac{\mu N^2A}{l}(长直线螺线管公式)。
L=Iϕ=lμN2A(长直线螺线管公式)。
其中,
A
A
A为截面积,
l
l
l为长度。可见,磁导率
μ
\mu
μ直接影响电感大小,将材料的导磁特性与电路中的电磁感应现象联系起来。
1 W b = 1 V s 1Wb=1Vs 1Wb=1Vs(伏特秒),1韦伯的磁通量变化在1秒内会感应出1伏特的电动势。例如,若一个单匝线圈在1秒内磁通量减少1 W b Wb Wb,其两端电压变化为1V。
根据
ϕ
=
B
S
\phi=BS
ϕ=BS,
W
b
=
V
s
=
T
m
2
Wb=Vs=Tm^2
Wb=Vs=Tm2,可以推出:
T
=
V
s
m
2
T=\frac{Vs}{m^2}
T=m2Vs。
根据
H
=
B
μ
H=\frac{B}{\mu}
H=μB,可以推出磁场强度的单位:
V
s
m
2
H
m
=
V
s
m
2
V
s
A
m
=
A
m
\frac{\frac{Vs}{m^2}}{\frac{H}{m}}=\frac{\frac{Vs}{m^2}}{\frac{\frac{Vs}{A}}{m}}=\frac{A}{m}
mHm2Vs=mAVsm2Vs=mA
受个人能力所限,难免存在疏漏,诚盼斧正。