使用gensim.models.word2vec.LineSentence之前的语料预处理

这篇博客记录了在自然语言处理中使用gensim的LineSentence进行词向量训练前的语料预处理步骤。包括分词、去除停用词和干扰词,以空格分隔词汇,最终实现按行读取的格式,为word2vec训练做好准备。
摘要由CSDN通过智能技术生成

nlp小白摸爬滚打的叨叨叨记录

在进行自然语言处理工作时,不可避免使用大型语料库。在这里记录并分享做自己实验的时候读函数文档,以及参考各路大神,终于明白LinSentence如何使用的历程。

函数文档链接:models.word2vec – Word2vec embeddings — gensim

(课题师兄说使用库的时候尽量看库文档)

LinSentence 函数在使用之前需要对待处理的文本数据进行分词,并以空格分隔;函数在运行时,按行读取已经以空格分隔的文档。

以下是实验代码

导入即将使用到的库

# -*- coding: utf-8 -*-

import math

import jieba
import jieba.posseg as psg
from gensim import
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值