AlexNet网络结构学习

一、网络详解

 Dropout:

通过随机失活一部分神经元来减小网络训练参数,从而避免过拟合

各连接层参数计算

二、网络复现

1.数据集分类

在界面按住shift+鼠标右键,点powershell,输入python split_data.py运行。

 

 2.pytorch搭建Alexnet模型

model.py:

 网络设置:

self.features = nn.Sequential(
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )

nn.sequential():将激活函数和网络层封装,实际在forward里才调用激活函数

padding:padding=1:在特征矩阵上下左右各补一行一列0

padding=(1,2):在特征值上下补一行0,左右补两列0

nn.ZeroPad2d[(1,2,1,2)]:在特征值上、左补一行(列)0,右、下补两列(行)0

N算出来不为整数,自动舍弃部分数据

 nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2)

padding=2:特征矩阵上下左右各补两行列0,N不为整数,则舍弃右下各一列行0,达到nn.ZeroPad2d[(1,2,1,2)]的效果

self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )

 nn.Dropout定义随机失活率,num_classes为分类类别,在本实验中,对五类花进行分类,num_classes=5

 if init_weights:
            self._initialize_weights()

 初始化权重

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

for循环遍历网络层,当为卷积层时,权重采用凯明初始化方法,若为全连接层,采用正态分布进行权重赋值,均值0,方差0.01。

pytorch里默认采用凯明权重初始化,可不加权重初始化部分

 def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x

x为输入变量,经feature网络层,torch.flatten展平成一维向量,tensor类型为(batch,channel,height,weight),start_dim=1从channel开始将channel*height*weight三维展平,后输入全连接层。

train.py

data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),#随机裁剪224*224
                                     transforms.RandomHorizontalFlip(),#水平方向随机翻转 默认p=0.5,一半翻,一半不翻
                                     transforms.ToTensor(),#转换为Tensor数据类型
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),#三个维度的均值、标准差
        "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

 训练集和验证集不同的预处理方式

 data_root = os.path.abspath(os.path.join(os.getcwd(), "../../.."))  # get data root path

os.getcwd()获取当前文件目录

print(os.getcwd())
E:\pycharm\Pycharm_project\pycharm_model

os.path.join(os.getcwd(),''../..'') 返回当前路径的上上级目录

 image_path = os.path.join(data_root, "data_set", "flower_data") 

 获取数据集路径

assert os.path.exists(image_path), "{} path does not exist.".format(image_path)

假设路径存在,否则输出“...path does not exist”

train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),#ImageFolder加载数据集
                                         transform=data_transform["train"])

ImageFolder加载数据集

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

 root:在root指定的路径下寻找图片
transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象
target_transform:对label的转换
loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

原文链接:https://blog.csdn.net/weixin_39386156/article/details/102686909

DataLoader 数据加载器

dataloader = DataLoader(dataset, batch_size = 2, shuffle=True,collate_fn = mycollate)

 dataset:传入数据

 shuffle=True/False:是否打乱数据

flower_list = train_dataset.class_to_idx#获取分类对应的索引
#flower_list= {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
   
 # cla_dict ={0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}
    cla_dict = dict((val, key) for key, val in flower_list.items())#
   

    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)#将python转换城JSON,indent=4为格式化输出,更美观
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

with open( '...', 'w' ) as f :文件存在则写内容,不存在则创建新文件

查看数据集:

 def imshow(img):
        img = img / 2 + 0.5  # unnormalize
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))
        plt.show()

 print(' '.join('%5s' % cla_dict[test_label[j].item()] for j in range(4)))
 imshow(utils.make_grid(test_image))

sunflowers sunflowers daisy sunflowers
 
# train  
net.train()
...
# validate
net.eval()
...

net.eval(),不启用 BatchNormalization 和 Dropout。此时pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。

 net.train() :启用 BatchNormalization 和 Dropout。 在模型测试阶段使用net.train() 让model变成训练模式,此时 dropout和batch normalization的操作在训练时起到防止网络过拟合的问题。

原文连接:https://blog.csdn.net/qq_46284579/article/details/120439049

训练结果:

predict.py

网上下载雏菊图片

运行结果:

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值