Pytorch 中net.train() 和 net.eval()的作用和如何使用?

#一般在训练模型的代码段加入:

model.train()
#在测试模型时候加入:

model.eval()

同时发现,如果不写这两个程序也可以运行,这是因为这两个方法是针对在网络训练和测试时采用不同方式的情况,比如Batch Normalization 和 Dropout。

训练时是正对每个min-batch的,但是在测试中往往是针对单张图片,即不存在min-batch的概念。

由于网络训练完毕后参数都是固定的,因此每个批次的均值和方差都是不变的,因此直接结算所有batch的均值和方差。

所有Batch Normalization的训练和测试时的操作不同

在训练中,每个隐层的神经元先乘概率P,然后在进行激活,在测试中,所有的神经元先进行激活,然后每个隐层神经元的输出乘P。

补充:Pytorch踩坑记录——model.eval()

最近在写代码时遇到一个问题,原本训练好的模型,加载进来进行inference准确率直接掉了5个点,尼玛,这简直不能忍啊~本菜鸡下意识地感知到我肯定又在哪里写了bug了~~~于是开始到处排查,从model load到data load,最终在一个被我封装好的module的犄角旮旯里找到了问题,于是顺便就在这里总结一下,避免以后再犯。

a) model.eval(),不启用 BatchNormalization 和 Dropout。此时pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。不然的话,一旦test的batch_size过小,很容易就会因BN层导致模型performance损失较大;

b) model.train() :启用 BatchNormalization 和 Dropout。 在模型测试阶段使用model.train() 让model变成训练模式,此时 dropout和batch normalization的操作在训练q起到防止网络过拟合的问题。

因此,在使用PyTorch进行训练和测试时一定要记得把实例化的model指定train/eval。

model.eval() 负责改变batchnorm、dropout的工作方式,如在eval()模式下,dropout是不工作的。 见下方代码:

  import torch
  import torch.nn as nn
 
  drop = nn.Dropout()
  x = torch.ones(10)
  
  # Train mode   
  drop.train()
  print(drop(x)) # tensor([2., 2., 0., 2., 2., 2., 2., 0., 0., 2.])   
  
  # Eval mode   
  drop.eval()
  print(drop(x)) # tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

torch.no_grad() 负责关掉梯度计算,节省eval的时间。

只进行inference时,model.eval()是必须使用的,否则会影响结果准确性。 而torch.no_grad()并不是强制的,只影响运行效率。

### 回答1: 在PyTorch中,`model.train()``model.eval()`是用于设置模型训练模式评估模式的方法。 当调用`model.train()`时,模型会进入训练模式。在训练模式下,模型会启用一些特定的功能,例如批量归一化Dropout等。这些功能在训练期间是有用的,但在评估期间不需要。 当调用`model.eval()`时,模型会进入评估模式。在评估模式下,模型会关闭训练期间的一些特定功能,以确保评估结果的一致性可靠性。 在训练期间,通常需要将模型设置为训练模式,以便在每个批次中更新模型参数。而在评估期间,需要将模型设置为评估模式,以便在测试集或验证集上进行评估,以便了解模型的性能。 需要注意的是,在调用`model.eval()`方法后,模型权重不会被修改。所以,如果需要继续训练模型,请确保在继续训练前调用`model.train()`方法,以将模型设置为训练模式。 ### 回答2: 在PyTorch中,model.train()model.eval()都是用来设置模型的训练模式的方法。 当调用model.train()方法时,模型的状态被设置为训练模式。这意味着模型会启用Batch NormalizationDropout等训练专用的层或操作,并且会自动计算梯度以便进行反向传播参数更新。在模型进行迭代训练时,应该使用train()方法来确保模型运行在正确的模式下。 相反,当调用model.eval()方法时,模型的状态被设置为评估模式。在评估模式中,模型会固定住Batch NormalizationDropout等训练专用的层或操作的值,以便进行模型的前向传播。这使得我们可以获得模型在评估数据上的输出。在测试、验证或推断模型时,应该使用eval()方法。 需要注意的是,当模型被调用时,它将自动在前向传播后续计算中切换到适当的模式。因此,在每个模型被调用前,我们通常只需要调用train()eval()方法一次即可。 综上所述,model.train()model.eval()方法在PyTorch中用于设置模型的训练模式评估模式,以确保模型在正确的状态下进行训练评估。 ### 回答3: 在PyTorch中,model.train()model.eval()是用来控制模型训练评估过程的方法。 model.train() 方法主要用于将模型切换到训练模式。在训练模式下,模型会启用 Dropout Batch Normalization 等操作的训练过程,以及训练数据的随机打乱。这种模式适合用于训练阶段,可以帮助模型更好地学习数据的特征模式。 model.eval() 方法主要用于将模型切换到评估模式。在评估模式下,模型会禁用 Dropout Batch Normalization 等操作的随机性,以保证结果的确定性。这种模式适合用于模型的验证测试阶段,可以保证模型的输出能够可靠地进行评估。 当我们进行模型的训练时,一般会通过在每个批次数据上调用model.train()切换到训练模式,并且在每个批次数据上进行前向计算反向传播来更新模型的权重。而在验证或测试阶段,会通过调用model.eval()切换到评估模式,并且只进行前向计算来生成模型的输出结果,以评估模型的性能。 总之,model.train()model.eval()主要用于控制模型的训练评估过程。通过切换模式,可以灵活地控制模型的操作,使其在不同的阶段达到最佳的效果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值