由于我的电脑是M3 Mac Pro,虽然有GPU,但是不是NVIDIA GPU,如果要启用GPU的能力,需要从源代码编译PyTorch,并确保安装了必要的依赖项。下面我把详细步骤写下来,供各位参考。
根据最新的信息,Mac M3 Pro可以安装支持GPU加速的PyTorch版本,但需要从源代码编译PyTorch,并确保安装了必要的依赖项。以下是详细的安装步骤:
安装步骤
-
克隆PyTorch源代码
bash复制
git clone --recursive https://github.com/pytorch/pytorch cd pytorch git checkout main # 或选择特定的发布版本,例如v2.4或更高版本 git submodule sync git submodule update --init --recursive
-
安装编译所需的包
-
使用
conda
安装必要的编译工具:bash复制
conda install cmake ninja pip install -r requirements.txt
-
-
安装额外的依赖项
-
如果需要使用
torch.compile
功能,还需要安装Triton:bash复制
USE_XPU=1 make triton
-
-
启用新的C++ ABI
-
在编译之前,运行以下命令以启用新的C++ ABI:
bash复制
export _GLIBCXX_USE_CXX11_ABI=1
-
-
设置CMake路径并编译PyTorch
-
设置CMake路径并从源代码构建PyTorch:
bash复制
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"} python setup.py develop cd ..
-
-
可选:安装torchvision
-
如果需要使用
torchvision
,可以按照以下步骤安装:bash复制
git clone https://github.com/pytorch/vision.git cd vision git checkout main # 或选择特定版本 python setup.py develop cd ..
-
注意事项
-
GPU加速:目前PyTorch的GPU加速主要依赖于CUDA,但Mac M3 Pro使用的是苹果自家的Apple Silicon芯片,不支持CUDA。因此,PyTorch的GPU加速在Mac M3 Pro上主要通过Metal Performance Shaders(MPS)实现。
-
性能优化:在编译过程中,确保安装了所有必要的依赖项,以避免编译错误。
-
验证安装:安装完成后,可以通过以下Python代码验证GPU是否可用:
Python复制
import torch if torch.backends.mps.is_available(): print("MPS GPU加速可用") else: print("MPS GPU加速不可用")
通过上述步骤,你可以在Mac M3 Pro上安装并使用支持GPU加速的PyTorch版本,从而充分利用苹果芯片的计算能力。