Mac电脑安装支持GPU加速的PyTorch版本

由于我的电脑是M3 Mac Pro,虽然有GPU,但是不是NVIDIA GPU,如果要启用GPU的能力,需要从源代码编译PyTorch,并确保安装了必要的依赖项。下面我把详细步骤写下来,供各位参考。

根据最新的信息,Mac M3 Pro可以安装支持GPU加速的PyTorch版本,但需要从源代码编译PyTorch,并确保安装了必要的依赖项。以下是详细的安装步骤:

安装步骤

  1. 克隆PyTorch源代码

    bash复制

    git clone --recursive https://github.com/pytorch/pytorch
    cd pytorch
    git checkout main # 或选择特定的发布版本,例如v2.4或更高版本
    git submodule sync
    git submodule update --init --recursive
  2. 安装编译所需的包

    • 使用conda安装必要的编译工具:

      bash复制

      conda install cmake ninja
      pip install -r requirements.txt
  3. 安装额外的依赖项

    • 如果需要使用torch.compile功能,还需要安装Triton:

      bash复制

      USE_XPU=1 make triton
  4. 启用新的C++ ABI

    • 在编译之前,运行以下命令以启用新的C++ ABI:

      bash复制

      export _GLIBCXX_USE_CXX11_ABI=1
  5. 设置CMake路径并编译PyTorch

    • 设置CMake路径并从源代码构建PyTorch:

      bash复制

      export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
      python setup.py develop
      cd ..
  6. 可选:安装torchvision

    • 如果需要使用torchvision,可以按照以下步骤安装:

      bash复制

      git clone https://github.com/pytorch/vision.git
      cd vision
      git checkout main # 或选择特定版本
      python setup.py develop
      cd ..

注意事项

  • GPU加速:目前PyTorch的GPU加速主要依赖于CUDA,但Mac M3 Pro使用的是苹果自家的Apple Silicon芯片,不支持CUDA。因此,PyTorch的GPU加速在Mac M3 Pro上主要通过Metal Performance Shaders(MPS)实现。

  • 性能优化:在编译过程中,确保安装了所有必要的依赖项,以避免编译错误。

  • 验证安装:安装完成后,可以通过以下Python代码验证GPU是否可用:

    Python复制

    import torch
    if torch.backends.mps.is_available():
        print("MPS GPU加速可用")
    else:
        print("MPS GPU加速不可用")

通过上述步骤,你可以在Mac M3 Pro上安装并使用支持GPU加速的PyTorch版本,从而充分利用苹果芯片的计算能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值