Ollama本地安装qwen2.5 7B模型

1、qwen2.5 7B模型介绍

Qwen2.5-7B是通义千问团队发布的一个大型语言模型,它在18T tokens的数据集上进行了预训练,旨在提供更丰富的知识、更强的编程和数学能力。以下是关于Qwen2.5-7B的一些详细介绍:

模型概述

  • 参数量:70亿(7B)参数。

  • 数据集:基于18万亿tokens的数据进行预训练,这使得模型拥有更多的知识和改进的能力。

  • 上下文长度:支持高达128K的上下文长度,这意味着它可以处理非常长的文本序列。

  • 生成能力:可以生成最多8K的内容。

主要特点

  • 多语言支持:支持超过29种语言,包括中文、英文、法文、西班牙文、俄文、日文等。

  • 指令遵循能力:经过指令微调(Instruct-tuned),能够更好地理解和执行特定的指令。

  • 编程与数学能力:特别是在编程和数学方面有了显著的提升,比如在HumanEval和MATH基准测试中得分较高。

  • 结构化数据理解与输出:改进了对结构化数据的理解和生成能力,例如表格数据以及JSON格式的输出。

版本类型

  • 基础版本(Base models):不建议直接用于对话任务,但可以作为进一步训练的基础。

  • 指令微调版本(Instruction-tuned models):专门设计来理解并执行特定指令,适用于需要对话功能的应用场景。

  • 量化版本:通过量化算法优化后的版本,降低了部署门槛,可以在资源受限的环境下运行。

部署方式

  • 可以使用Hugging Face Transformers库进行本地推理,或者使用vLLM这样的高效推理框架进行服务部署。

  • 支持多种硬件配置,包括CPU和GPU,且有针对不同硬件环境优化的实现方案。

应用场景

  • 由于其强大的语言理解和生成能力,Qwen2.5-7B可以应用于聊天机器人、智能助手、代码生成、内容创作等多种领域。

之前我的一篇文章菜鸟妈妈:微软开源GraphRAG的安装+示例教程(最全超详细教程,小白上手)也详细讲解了如何安装Ollama,大家可以参考。

2、创建Qwen2.5 7B虚拟环境

创建一个新的虚拟环境(首先,需要确保你的系统已经安装好anaconda),我自己电脑的python版本是3.12.2,所以执行如下命令: 

conda create -n Grid-ollama-local python=3.12.2

3、激活Qwen2.5 7B虚拟环境

激活名为的 Grid-ollama-local的Conda 环境,执行命令行如下:

conda activate Grid-ollama-local

4、安装Qwen2.5 7B模型

4.1 本地部署

代码下载有两种方式,一种是从Ollama上下载和运行,一种是从Qwen的github官方地址下载后运行。我采用的第一种方式。

  • Ollama下载

Ollama的下载地址:qwen2.5-coder:7b,Qwen2.5 7B模型大小为4.7GB。

然后执行如下命令,拉取模型并执行,第一次运行的时候需要下载。

ollama run qwen2.5-coder:7b

下载并运行后,你就可以提问了,比如:我问的问题,请问阿里云的通义千问模型有哪些,Qwen2.5 7B模型回答如下

5、Open-webui实现可视化

官方github界面:https://github.com/open-webui/open-webui?tab=readme-ov-file

官方文档:🚀 Getting Started | Open WebUI

具体参考Quick Start的内容:⏱️ Quick Start | Open WebUI

conda create -n open-webui python=3.12.2

5.2 激活webui的虚拟环境

添加图片注释,不超过 140 字(可选)

5.3 安装open-webui库

执行如下命令:

 
 

pip install open-webui

5.4 启动open-webui服务

 
 

open-webui serve

添加图片注释,不超过 140 字(可选)

初次启动也需要花费一点时间,启动成功之后即可看到8080端口。

添加图片注释,不超过 140 字(可选)

6、访问webui界面

在浏览器里输入localhost:8080 即可正常访问。 第一次登录会要求输入用户名、邮箱和密码,之后每次登录都会要求输入邮箱和密码。

添加图片注释,不超过 140 字(可选)

因为我之前也安装了其他模型,所以大家可以看看不同模型的回答,qwen2.5 7B针对相同的问题,有不同的答复,第一个问题回答还是错误的,准确性还有待进一步提高和加强。

7、比较Qwen2.5 7B和mistral:latest模型

### 部署 Qwen2.5-7B 模型Ollama 环境 #### 准备工作 为了成功部署 `Qwen2.5-7B` 至 Ollama 平台,需确认环境已安装必要的依赖项并配置好 Python 开发环境。确保拥有管理员权限来执行命令以及足够的磁盘空间存储大型模型文件。 #### 下载模型 获取指定版本的预训练权重对于启动项目至关重要。根据官方文档指示下载对应于 `/qwen2.5-7b-instruct` 的模型资源,并将其放置在服务器上的适当位置[^1]。 ```bash # 假设通过git clone或其他方式获得模型仓库链接 git clone https://path_to_model_repo/qwen.git cd qwen/models/ wget http://model_downloads/qwen2.5-7b-instruct.tar.gz tar -xzf qwen2.5-7b-instruct.tar.gz ``` #### 设置Ollama服务 初始化本地或远程主机上运行的服务实例之前,先按照官方指南完成 Ollama Server 的搭建过程。这通常涉及 Docker 或 Kubernetes 编排工具的应用程序设置。一旦准备好 API 接口,则可以继续下一步操作。 #### 修改API接口参数 调整客户端代码中的连接细节以匹配实际使用的 IP 地址和端口号。这里展示了一个简单的例子用于创建聊天会话请求: ```python from openai import OpenAI client = OpenAI( base_url='http://your_ollama_server_ip:port/v1/', api_key='your_api_token_here', ) chat_completion = client.chat.completions.create( messages=[ {'role': 'user', 'content': '广州有什么好玩的地方?'} ], model='qwen2.5:7b', stream=False, ) print(chat_completion.choices[0].message.content) ``` 请注意替换上述脚本里的占位符 (`your_ollama_server_ip`, `port`, 和 `your_api_token_here`) 为真实的值以便正常通信[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值