目录
前言
二叉树的 先序遍历、中序遍历、后序遍历、层序遍历(BFS)。
一、遍历介绍
按照事先约定的某种规则或次序,对节点各访问一次而且仅一次。与向量和列表等线性结构一样,二叉树的这类访问也统称为遍历(traversal)。
二叉树本身并不具有天然的全局次序, 故为实现遍历,需通过在各节点与其孩子之间约定某种局部次序, 间接地定义某种全局次序。
按惯例左兄弟优先于右兄弟, 若记做节点 V ,及其左、右孩子 L 和 R ,则下图所示,局
部访问的次序可有 V L R 、 L V R 和 L R V 三种选择。根据节点 V 在其中的访问次序,三种策略也相应地分别称作 先序遍历、中序遍历 和 后序遍历 。
可以根据节点 V
次序位置进行记忆,先序遍历中 V
位于前端,中序遍历中 V
位于中间,后序遍历中 V
位于后端。
层序遍历是从上到下一层一层访问树的每一个节点。
二、先序遍历
通过先序遍历操作后,返回结果的顺序如下图所示。 注意下图是最终返回的结果展示顺序,实现方法及流程并非如此。
1.递归
C++代码
void preOrderRecur(Node* head) {
if (head == nullptr) {
return;
}
std::cout << head->value << ",";
preOrderRecur(head->left);
preOrderRecur(head->right);
}
2.非递归
上图所示的二叉树遍历,流程描述如下:
1.从节点 a 出发,沿左分支不断深入,直至没有左分支的节点,沿途节点遇到后立即访问。首先 a 的右节点 c 直接进栈,然后访问左节点 b;
2.b 的右节点直接进栈,此时其为空节点,所以空节点进栈,访问 b 的左节点,也为空,直接进行下一步;
3.弹出栈顶空节点,再弹出 c,将 c 的右节点 f 直接进栈,并访问左节点 d;
4.将 d 的右节点 e 直接进栈,并访问左节点 ;
5.d 的左节点为空。接下来弹出栈顶的 e ,并将 e 的右节点(空节点)直接进栈,访问 e 的左节点;
6.e 的左节点为空。接下来弹出栈顶的 f ,并将 f 的右节点(空节点)直接进栈,访问 f 的左节点 g ;
7.将 g 的右节点(空节点)直接进栈, 访问 g 的左节点;
8.g 的左节点为空。弹出g 的右节点(空节点),再弹出 f 的右节点(空节点);
9.栈为空,遍历结束。(其实上述描述的每一次循环都会做一次栈是否为空的检查)
C++代码
//先序遍历非递归
//算法步骤:
//a、根节点进栈;
//b、弹出并输出栈顶节点tp;
//c、栈顶节点tp的左孩子进栈、右孩子进栈;
//d、重复上述b、c;
void preorderTraversal(TreeNode* root) {
if (nullptr == root)
{
return;
}
stack< TreeNode*> mstack;
mstack.push(root);
while (!mstack.empty())
{
//打印栈顶节点
TreeNode* tp = mstack.top();
cout << tp->val << endl;
//弹出节点
mstack.pop();
//右孩子节点压栈
if (nullptr != tp->right)
{
mstack.push(tp->right);
}
//左孩子节点压栈
if (nullptr != tp->left)
{
mstack.push(tp->left);
}
}
return;
}
//另一解
//从当前节点出发,沿左分支不断深入,直至没有左分支的节点,沿途节点遇到后立即访问
template <typename T, typename VST> //元素类型、操作器
static void visitAlongLeftBranch(BinNodePosi(T) x, VST& visit, Stack<BinNodePosi(T)>& S) {
while (x) {
visit(x->data); //访问当前节点
S.push(x->rChild); //右孩子入栈暂存(可优化:通过判断,避免空的右孩子入栈)
x = x->lChild; //沿左分支深入一层
}
}
template <typename T, typename VST> //元素类型、操作器
void travPre_I2(BinNodePosi(T) x, VST& visit) { //二叉树先序遍历算法(迭代版)
Stack<BinNodePosi(T)> S; //辅助栈
while (true) {
visitAlongLeftBranch(x, visit, S); //从当前节点出发,逐批访问
if (S.empty()) break; //直到栈空
x = S.pop(); //弹出下一批的节点
}
}
三、中序遍历
通过中序遍历操作后,返回结果的顺序如下图所示。同样需注意下图是最终返回的结果展示顺序,实现方法及流程并非如此。
1.递归
C++代码
void inOrderRecur(Node* head) {
if (head == nullptr) {
return;
}
inOrderRecur(head->left);
std::cout << head->value << ",";
inOrderRecur(head->right);
}
2.非递归
上图所示的二叉树遍历,流程描述如下:
1. 从节点 b 出发, b 进栈 S。沿左分支不断深入,遇到节点则入栈;
2.直至所有左分支节点处理完毕。(此时 S 中从上往下为 a、b);
3.弹出栈 S 顶节点 a 并访问之;
4. 转向 a 右子树。到此处截止,为一个循环体操作。接下来对 a 右子树,对其重复循环体类似操作;
5.但这里a 右子树为空,所以继续弹出 b 。转向 b 右子树,对其进行重复循环体类似操作;
6.所以 f、d、c 依次入栈,c 在栈顶。弹出 c ,转向 c 右子树,重复循环体;
7.c 右子树为空。弹出 d ,转向 d 右子树,重复循环体。
8. e 入栈,弹出 e ,转向 c 右子树,重复循环体,c 右子树为空;
9.弹出 f,转向 f 右子树,重复循环体。
10.g 入栈, g 出栈,转向 g 右子树,为空;
11.此时,没有新的节点入栈,栈中也没有其他节点,终止遍历操作。
C++代码
//中序遍历非递归
//算法步骤:
//a、从根节点开始,整棵树的左边界节点依次进栈;
//b、弹出并输出栈顶节点tp;
//c、栈顶节点tp的右子树左边界节点依次进栈;
//d、重复上述b、c;
void inorderTraversal(TreeNode* root) {
TreeNode* tp = root;
stack< TreeNode*> mstack;
//弹出并输出栈顶节点,并对其右孩子节点压栈
while (!mstack.empty() || nullptr != tp)
{
//左边界节点依次进栈
if (nullptr != tp)
{
mstack.push(tp);
tp = tp->left;
}
else
{
//获取栈顶节点指针
tp = mstack.top();
//输出
cout << tp->val << endl;
//弹出节点
mstack.pop();
//如果有右子树,右子树的左边界节点压栈
tp = tp->right;
}
}
return;
}
//另一解
template <typename T> //从当前节点出发,沿左分支不断深入,直至没有左分支的节点
static void goAlongLeftBranch(BinNodePosi(T) x, Stack<BinNodePosi(T)>& S) {
while (x) { S.push(x); x = x->lChild; } //当前节点入栈后随即向左侧分支深入,迭代直到无左孩子
}
template <typename T, typename VST> //元素类型、操作器
void travIn_I1(BinNodePosi(T) x, VST& visit) { //二叉树中序遍历算法(迭代版)
Stack<BinNodePosi(T)> S; //辅助栈
while (true) {
goAlongLeftBranch(x, S); //从当前节点出发,逐批入栈
if (S.empty()) break; //直至所有节点处理完毕
x = S.pop(); visit(x->data); //弹出栈顶节点并访问之
x = x->rChild; //转向右子树
}
}
四、后序遍历
通过后序遍历操作后,返回结果的顺序如下图所示。
1.递归
C++代码
void posOrderRecur(Node* head) {
if (head == nullptr) {
return;
}
posOrderRecur(head->left);
posOrderRecur(head->right);
std::cout << head->value << ",";
}
2.非递归
上图所示的二叉树遍历,流程描述如下:
1.找到最高左侧可见叶节点 k,若有右子树优先入栈(此处为 j),但优先往左子树方向走(i 入栈);
2.i 的右子树 h 入栈,i 无左子树,所以继续对右子树 h 进行操作;
3.h 的右子树 g 入栈,方向到左子树(b 入栈);
4.b 的右子树 a 入栈,b 无左子树。继续对 a 进行操作,a 无子节点;
5.到此为止,第一次入栈操作结束,此时栈中顶而下依次为 abghijk;
6.接下来弹出栈顶元素 a ,访问之;
7.b 是 a 的父节点,不用进行 入栈操作。弹出栈顶元素 b ,访问之;
8.接下来是 g ,非 b 的父节点,执行入栈操作,按照1~5步骤说的方法,依次将 fedc 入栈;
9.接下来判断是否需要执行入栈,并不断从栈中弹出节点,并访问之;
10.最后,栈为空,遍历结束。
C++代码
//后序遍历非递归
//算法步骤:
//申请两个栈,s1,s2
//a、根节点入栈s1;
//b、弹出(不输出)栈顶节点tp,压入栈s2;
//c、栈顶节点tp的左孩子、右孩子依次进栈s1;
//d、重复上述b、c,直到栈s1为空,所有节点进入栈s2;
//e、依次弹出并输出栈s2栈顶节点;
void postorderTraversal(TreeNode* root) {
//根节点为空,直接返回
if (nullptr == root)
{
return;
}
//申请2个栈
stack< TreeNode*> s1, s2;
//根节点压入s1
s1.push(root);
while (!s1.empty())
{
TreeNode* tp = s1.top();
s2.push(tp);
s1.pop();
if (nullptr != tp->left)
{
s1.push(tp->left);
}
if (nullptr != tp->right)
{
s1.push(tp->right);
}
}
//依次弹出并输出s2节点
while (!s2.empty())
{
cout << s2.top()->val << endl;
s2.pop();
}
return;
}
//另一解
template <typename T> //在以S栈顶节点为根的子树中,找到最高左侧可见叶节点
static void gotoHLVFL(Stack<BinNodePosi(T)>& S) { //沿途所遇节点依次入栈
while (BinNodePosi(T) x = S.top()) //自顶而下,反复检查当前节点(即栈顶)
if (HasLChild(*x)) { //尽可能向左
if (HasRChild(*x)) S.push(x->rChild); //若有右孩子,优先入栈
S.push(x->lChild); //然后才转至左孩子
} else //实不得已
S.push(x->rChild); //才向右
S.pop(); //返回之前,弹出栈顶的空节点
}
template <typename T, typename VST>
void travPost_I(BinNodePosi(T) x, VST& visit) { //二叉树的后序遍历(迭代版)
Stack<BinNodePosi(T)> S; //辅助栈
if (x) S.push(x); //根节点入栈
while (!S.empty()) {
if (S.top() != x->parent) //若栈顶非当前节点之父(则必为其右兄),此时需
gotoHLVFL(S); //在以其右兄为根之子树中,找到HLVFL(相当于递归深入其中)
x = S.pop(); visit(x->data); //弹出栈顶(即前一节点之后继),并访问之
}
}
五、层序遍历
C++代码
//层序遍历
//一般基于队列的实现:
//a、将二叉树的根节点push到队列中。
//b、判断队列不为空就输出队头元素。
//c、判断当前对头节点是否有孩子节点,有则push到队列中。
//循环操作b、c,直到队列为空。
void FloorPrint_QUEUE(TreeNode* Tree) //层序遍历_队列实现
{
queue < TreeNode* > q;
if (Tree != nullptr)
q.push(Tree); //根节点进队列
while (!q.empty()) //队列不为空
{
TreeNode* node=q.front();
cout << node->val;
if (node->left != nullptr) //如果有左孩子,入队
q.push(node->left);
if (node->right != nullptr) //如果有右孩子,入队
q.push(node->right);
q.pop(); //已经遍历过的节点出队列
}
}
六、参考文献
1.[算法] 二叉树的 先序遍历、中序遍历、后序遍历_scxyz_的博客-CSDN博客_中序遍历算法
2.二叉树的先序、中序、后序遍历C++_星星典典的博客-CSDN博客_c++二叉树的先序,中序,后序遍历