空天地一体化网络

空天地一体化网络旨在实现地面、卫星和高空平台网络的系统级集成,以便统一管理和调度资源。
一种高、中、低轨卫星分层分布的空天地一体化卫星网络:
网络可以对高、中、低卫星进行分层,每一层卫星的任务可以不同,同时结合软件定义网络技术,将高轨卫星作为控制器,低轨卫星作为转发器,可以大大提高卫星信息传输的速度、降低时延,且可以降低卫星网络的硬件成本和网络灵活性。

1.天地一体化网络

1.1.天地一体化网络发展现状

高轨卫星星座的代表是国际海事卫星通信系统Inmarsat,Inmarsat目前由14颗距地球表面约36 000公里的地球静止轨道卫星和位于地面的船站、岸站、网络 协调站等主要部分组成,。[1]
中轨卫星星座的代表是O3b. O3b中轨星座最初由O3b Networks公司运营, 整个星座由20颗距离地 面表面约6 000公里的中轨卫星组成。低轨卫星星座的主要代表包括Iridium、OneWeb和Starlink等. 其中, Iridium 系统于1997年开始部署第1代, 由66颗距地球表面约780公里的低轨卫星构成, 每颗卫星与其他4颗卫星相连, 构成覆盖全球的一个低轨卫星星座,为全球用户提供语音和数据(窄带、宽带)等多种服务.。OneWeb是一个由648颗低轨卫星组成的星座, 目 标是为全球用户提供互联网宽带服务,截止2022年5月底, OneWeb 公司成功部署了 428 颗卫星.。Starlink是SpaceX提出的一个巨型低轨卫星星座, 卫星距地球表面约550公里, 为全球用户提供宽带服务. Starlink初期规划部署约12 000颗卫星, 最终目标部署超过4万颗卫星。截止2022年5月底, Starlink 已经完成2373颗卫星的部署。[1]
国内方面, 中国航天科技集团的“鸿雁”星座、中国航天科工集团的“虹云”星座、中国电科的“天象”星座均只 发射了一至两颗实验星或技术验证星; 银河航天于2022年3月5日成功发射6颗低轨宽带通信卫星, 构建了星地 融合5G试验网络“小蜘蛛网”[1]

1.2.天地一体化网络协议体系


针对空间网络特点, 空间网络标准化组织空间数据系统咨询委员会(consultative committee for space data systems, CCSDS) 为国际空间站和深空探测器等在轨飞行器制定了一系列覆盖物理层、数据链路层、网络层、传输层和应用层的标准协议。[1]

物理层制定了无线射频和调制系统和 Proximity-1空间链路协议, 其中无线射频和调制系统定义了航天器与地 面站之间空间链路的物理层协议, Proximity-1空间链路协议定义了邻近空间链路的物理层特性。[1]

数据链路层, CCSDS定义了两个子层, 分别是数据链路协议子层和同步与信道编码子层, 数据链路协议子层工作在同步与信道 编码子层之上, 为遥控(telecommand, TC)、遥测(telemetry, TM)、高级在轨系统(advanced orbiting system, AOS) 和邻近空间(Proximity-1)分别定义了传输变长数据的空间数据链路协议, 这些协议的集合统称为空间数据链路协 议(space data link protocols, SDLP)。[1]

网络层, 通过定义空间分组协议(space packet protocol, SPP)实现空间网络路由功能。[1]

传输层使用SCPS-TP (space communications protocol specification-transport protocol)协议实现端到端的可靠数据传输。[1]

应用层,定义了文件传输协议(CCSDS file delivery protocol, CFDP)(严格地说, CFDP同时工 作在应用层和传输层)和各类压缩协议(例如: lossless data compression和image data compression协议)等应用协议。[1]

为实现空间网络与地面网络的融合, CCSDS制定了IP Over CCSDS标准, 提供了对IP协议的支持。2022年3月完成系统设计的3GPP Release17版本, 定义了非地面网络(non terrestrial networks, NTN)与地面5G移动网络的融合标准, 将空间网络全面纳入全球无线标准体系。[1]


针对端到端传播时延大、且中间链路连通性无法保证的网络, 美国国家航空航天局(National Aeronautics and Space Administration, NASA) 喷气推进实验室提出了时延容忍网络(delay-tolerant networking, DTN)协议体系。[1]

由于链路的可用性 不确定, 与TCP/IP协议尽可能地以最快速度完成数据传输不同, 时延容忍网络协议的目标是尽可能地实现数据的 正确传输, 并不追求传输的时效性。[1]


1.3.天地一体化网络架构

图2显示了采用天网地网架构的一种天地一体化网络架构, 天基网络由各级卫星星座和地基节点网(包含地面信关站等地面基础设施)组成, 地面网络主要由地面互联网和移动互联网组成, 天基网络与地面网络通过天地一 体化网络互联节点连接。[1]

图2 天地一体化网络架构

近年来, SDN和NFV技术在地面网络中得到了广泛应用。[1]

SDN将所有的控制逻辑放到控制器中, 控制器按照上层应用的需求计算路由, 通过OpenFlow协议与网络设备通信, 动态设定转发表, 网络交换设备只需按照转发表完成最纯粹的数据转发功能即可.。[1]SDN技术能够在异构多域网络环境下对全网资源进行统一管理和动态配置,实现灵活高效的资源分配和协同。因此天地融合网络可通过SDN技术实现网络的弹性可重构,通过SDN提供的网络功能增强网络活力,降低运营成本,促进网络开放与业务创新。[2]

NFV将网络功能从传统的专用硬件设备中抽离出来, 通过虚 拟化技术以软件的形式运行在通用设备上, 并通过对这些服务进行动态编排, 实现对用户的按需服务.。由于SDN 将网络的控制平面与数据平面分开, NFV将设备的管理平面与操作平面分开, 可以大幅提升网络的可管理性和灵活性, 使得快速部署新的网络功能成为现实。[1]

1.4天地一体化网络路由协议

与地面拓扑相对固定不同, 空间网络拓扑具有高动态性特点.。因此, 在设计天地一体化网络路由协议时, 需满足收敛速度快、协议开销低、路由稳定性高等特点.。随着星上计算能力和存储能力的不断提升, 卫星网络规模的大幅扩大, 以及互联网应用的快速增长, 卫星网 络IP化成为必然趋势。[1]

1.4.1.基于位置信息的路由协议

1.4.2.基于业务需求的路由协议

1.4.3.负载均衡路由协议

1.4.4.切换重路由协议

参考文献

[1]蒋长林,李清,王羽,等.天地一体化网络关键技术研究综述[J].软件学报,2024,35(01):266-287.DOI:10.13328/j.cnki.jos.006753.

[2]徐晖,缪德山,康绍莉,等.面向天地融合的卫星网络架构和传输关键技术[J].天地一体化信息网络,2020,1(02):2-10.

智慧消防安全应急管理是现代城市安全管理的重要组成部分,随着城市化进程的加速,传统消防安全管理面临着诸多挑战,如消防安全责任制度落实不到位、消防设施日常管理不足、消防警力不足等。这些问题不仅制约了消防安全管理水平的提升,也给城市的安全运行带来了潜在风险。然而,物联网和智慧城市技术的快速发展为解决这些问题提供了新的思路和方法。智慧消防作为物联网和智慧城市技术结合的创新产物,正在成为社会消防安全管理的新趋势。 智慧消防的核心在于通过技术创新实现消防安全管理的智能化和自动化。其主要应用包括物联网消防安全监管平台、城市消防远程监控系统、智慧消防平台等,这些系统利用先进的技术手段,如GPS、GSM、GIS等,实现了对消防设施的实时监控、智能巡检和精准定位。例如,单兵定位方案通过信标点定位和微惯导加蓝牙辅助定位技术,能够精确掌握消防人员的位置信息,从而提高救援效率和安全性。智慧消防不仅提升了消防设施的管理质量,还优化了社会消防安全管理资源的配置,降低了管理成本。此外,智慧消防的应用还弥补了传统消防安全管理中数据处理方式落后、值班制度执行不彻底等问题,赋予了建筑消防设施智能化、自动化的能力。 尽管智慧消防技术在社会消防安全管理工作中的应用已经展现出巨大的潜力和优势,但目前仍处于实践探索阶段。相关职能部门和研究企业需要加大研究开发力度,进一步完善系统的功能实效性。智慧消防的发展既面临风险,也充满机遇。当前,社会消防安全管理工作中仍存在制度执行不彻底、消防设施日常维护不到位等问题,而智慧消防理念技术的应用可以有效弥补这些弊端,提高消防安全管理的自动化智能化水平。随着智慧城市理念的不断发展和实践,智慧消防将成为推动社会消防安全管理工作城市化进程同步发展的关键力量。
### 空天地一体化网络资源分配方案和技术 空天地一体化网络是一种融合卫星通信、高空平台通信以及地面蜂窝网络等多种异构网络形式的新型通信体系结构。这种网络通过综合利用空间、空中和地面资源,提供无缝覆盖和高速率传输能力。 #### 1. 资源分配的核心挑战 由于空天地一体化网络涉及多种不同类型的节点(如低轨卫星、无人机基站、地面宏小区等),其资源分配面临诸多复杂性和动态变化因素的影响。这些挑战主要包括频谱共享冲突管理、多维度链路优化以及跨层协作机制的设计等问题[^2]。 #### 2. 动态频谱接入技术 为了提高频谱利用率并减少干扰,在空天地一体化网络中可以采用认知无线电技术和动态频谱接入策略来实现灵活高效的频率资源配置。这种方法能够感知当前环境中的可用信道状态,并据此调整发射功率或者切换至其他未被占用的频带进行数据传送操作[^1]。 #### 3. 边缘计算支持下的联合调度算法 边缘计算作为一种新兴范式,可有效降低端到端延迟时间并通过靠近用户的处理方式减轻核心网负担。针对空天地场景下海量连接设备所产生的巨大流量需求,基于深度强化学习模型开发出来的自适应型联合调度算法成为解决此类问题的有效手段之一。该类算法能够在保障服务质量(QoS)前提条件下最大化整体系统吞吐量性能指标表现优异的同时还具备较强鲁棒特性以应对各种不确定性情况发生时仍能保持良好运行效果[^4]。 ```python import numpy as np def joint_scheduling_algorithm(user_requests, resource_pool): """ A simplified example of a joint scheduling algorithm. Parameters: user_requests (list): List containing requests from users. resource_pool (dict): Dictionary representing available resources. Returns: dict: Allocated resources per request. """ allocation = {} for req in user_requests: best_resource = None min_cost = float('inf') for res_id, capacity in resource_pool.items(): cost = calculate_cost(req, res_id) if cost < min_cost and capacity >= req['bandwidth']: min_cost = cost best_resource = res_id if best_resource is not None: resource_pool[best_resource] -= req['bandwidth'] allocation[req['id']] = {'resource': best_resource, 'cost': min_cost} return allocation def calculate_cost(request, resource_id): """Placeholder function to simulate cost calculation.""" # Example logic; replace with actual implementation based on network conditions etc. distance_factor = abs(resource_id - request['location']) bandwidth_demand = request['bandwidth'] / 1e6 # Convert bytes/sec -> Mbps return distance_factor * bandwidth_demand ** 2 + np.random.rand() * 50 ``` 上述代码片段展示了一个简化版本的联合调度算法框架,用于演示如何根据不同请求的特点及其所在位置等因素决定最优资源分配方案[^3]。 #### 4. 多接入边缘计算(MEC)-增强型架构设计思路 考虑到未来超密集部署环境下可能存在的回传瓶颈现象,引入MEC功能模块作为补充措施显得尤为重要。它不仅有助于缓解传统集中式云计算所带来的高延时缺陷问题,而且还可以进一步挖掘本地化服务能力从而提升用户体验质量(UQoE)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值