本篇为樊昌信,曹丽娜. 通信原理(第七版)[M]. 北京:国防工业出版社(2012)的笔记(3):随机过程。
3. 随机过程
3.1 随机过程的基本概念
-
随机过程:所有样本函数 ξ i ( t ) \xi_i(t) ξi(t)的集合或随机变量 ξ ( t i ) \xi(t_i) ξ(ti)的集合。
-
随机过程的分布函数:以一维为例, F 1 ( x 1 , t 1 ) = P [ ξ ( t 1 ) ≤ x 1 ] F_1(x_1,t_1) = P[\xi(t_1)\leq x_1] F1(x1,t1)=P[ξ(t1)≤x1]。
-
随机过程的数字特征:
-
均值
E [ ξ ( t ) ] = ∫ − ∞ ∞ x f 1 ( x , t ) d x = a ( t ) E[\xi(t)]=\int_{-\infty}^{\infty} x f_{1}(x, t) d x=a(t) E[ξ(t)]=∫−∞∞xf1(x,t)dx=a(t) -
方差
D [ ξ ( t ) ] = E { [ ξ ( t ) − a ( t ) ] 2 } = σ 2 ( t ) D[\xi(t)]=E\left\{[\xi(t)-a(t)]^{2}\right\}=\sigma^2(t) D[ξ(t)]=E{ [ξ(t)−a(t)]2}=σ2(t) -
自相关函数
R ( t 1 , t 2 ) = E [ ξ ( t 1 ) ξ ( t 2 ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f 2 ( x 1 , x 2 ; t 1 , t 2 ) d x 1 d x 2 R\left(t_{1}, t_{2}\right)=E\left[\xi\left(t_{1}\right) \xi\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f_{2}\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2} R(t1,t2)=E[ξ(t1)ξ(t2)]=∫−∞∞∫−∞∞x1x2f2(x1,x2;t1,t2)dx1dx2 -
互相关函数
R ξ η ( t 1 , t 2 ) = E [ ξ ( t 1 ) η ( t 2 ) ] R_{\xi \eta}\left(t_{1}, t_{2}\right)=E\left[\xi\left(t_{1}\right) \eta\left(t_{2}\right)\right] Rξη(t1,t2)=E[ξ(t1)η(t2)]
-
3.2 平稳随机过程
-
严格平稳: 随机过程的统计特性与时间起点无关。 一维分布则与时间 t t t无关。二维分布只与间隔 τ \tau τ有关。
-
广义平稳:均值与时间 t t