图 畅通工程(并查集)_58

文章介绍了一个关于城镇交通网络的问题,即如何通过最少的新道路建设使得所有城镇间都能通过道路间接到达。这个问题使用了并查集数据结构来解决,通过路径压缩优化了查找和合并操作。程序读入城镇和道路信息,计算最少需要新增的道路数量。
摘要由CSDN通过智能技术生成

工程
描述
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
输入描述:
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 注意:两个城市之间可以有多条道路相通,也就是说 3 3 1 2 1 2 2 1 这种输入也是合法的 当N为0时,输入结束,该用例不被处理。
输出描述:
对每个测试用例,在1行里输出最少还需要建设的道路数目。
【实例1】
输入:
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

输出:
1
0
2
998
【并查集】的功能有两个,判断两个元素是否属于同一集合,合并不同的集合。有两种操作,查找和合并。逻辑上为树结构,每个子节点都指向它对应的父结点,不存在顺序之分,只要在同一个树上就属于同一个集合。优化方法:路径压缩(结点都指向根结点,减小树的深度)

#include<bits/stdc++.h>
using namespace std;
//并查集 
const int MAXN=1000;
int father[MAXN];
int height[MAXN];
void init(int n){
	for(int i=1;i<=n;i++){
		father[i]=i;
		height[i]=0;
	}
}
//返回父结点 
int find(int x){
	if(x!=father[x]){
		father[x]=find(father[x]);//寻找根结点,压缩路径 
	}
	return father[x];
}
//合并集合 
void union1(int x,int y){
	int x1=find(x);
	int y1=find(y);
	//如果x和y不在一个集合内就合并 
	if(x1!=y1){
		//比较两“树”的高度
		if(height[x1]<height[y1]){
			//x树的高度小于y树的高度
			father[x1]=y1; 
		}
		else if(height[x1]>height[y1]){
			//y树的高度小于x树的高度
			father[y1]=x1; 
		}
		else{
			father[y1]=x1;
			height[x1]++;
			//由于实现了路径压缩,所以height加1就好 
		}
	}
}
int main(){
	int n,m,x,y,number;
	while(cin>>n){
		if(n==0){
			break;
		}
		//初始化每个城镇的父结点是它自己 
		init(n);
		cin>>m;
		while(m--){
			//输入道路 
			cin>>x>>y;
			//合并集合 
			union1(x,y);
		}
		number=0;
		for(int j=1;j<=n;j++){
			if(find(j)==j){
				number++;
			}
		}
		cout<<number-1<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果树上有叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值