工程
描述
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
输入描述:
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 注意:两个城市之间可以有多条道路相通,也就是说 3 3 1 2 1 2 2 1 这种输入也是合法的 当N为0时,输入结束,该用例不被处理。
输出描述:
对每个测试用例,在1行里输出最少还需要建设的道路数目。
【实例1】
输入:
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
输出:
1
0
2
998
【并查集】的功能有两个,判断两个元素是否属于同一集合,合并不同的集合。有两种操作,查找和合并。逻辑上为树结构,每个子节点都指向它对应的父结点,不存在顺序之分,只要在同一个树上就属于同一个集合。优化方法:路径压缩(结点都指向根结点,减小树的深度)
#include<bits/stdc++.h>
using namespace std;
//并查集
const int MAXN=1000;
int father[MAXN];
int height[MAXN];
void init(int n){
for(int i=1;i<=n;i++){
father[i]=i;
height[i]=0;
}
}
//返回父结点
int find(int x){
if(x!=father[x]){
father[x]=find(father[x]);//寻找根结点,压缩路径
}
return father[x];
}
//合并集合
void union1(int x,int y){
int x1=find(x);
int y1=find(y);
//如果x和y不在一个集合内就合并
if(x1!=y1){
//比较两“树”的高度
if(height[x1]<height[y1]){
//x树的高度小于y树的高度
father[x1]=y1;
}
else if(height[x1]>height[y1]){
//y树的高度小于x树的高度
father[y1]=x1;
}
else{
father[y1]=x1;
height[x1]++;
//由于实现了路径压缩,所以height加1就好
}
}
}
int main(){
int n,m,x,y,number;
while(cin>>n){
if(n==0){
break;
}
//初始化每个城镇的父结点是它自己
init(n);
cin>>m;
while(m--){
//输入道路
cin>>x>>y;
//合并集合
union1(x,y);
}
number=0;
for(int j=1;j<=n;j++){
if(find(j)==j){
number++;
}
}
cout<<number-1<<endl;
}
return 0;
}