迭代是 python 中访问集合元素的一种非常强大的一种方式。迭代器是一个可以记住遍历位置的对象。在Python中,一边循环一边计算的机制,称为生成器: generator。Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句。包就是包含__init__.py 文件的文件夹,用来管理 py 文件,对 py 文件按照特定的方式进行分类。异常捕获是让程序在出现异常的时候,不崩溃,还可以接着往后执行
迭代器
迭代器是容器型数据类型,迭代器可以使用容器型通用操作
1、 迭代器的特点a. 打印迭代器的时候无法查看迭代器中的所有元素,也无法通过len()获取元素的个数
b. 如果要使用迭代器中的元素必须将该元素取出,取元素的时候只能从上往下按顺序取2、 创建迭代器
a. 用 iter 将其他序列转换成迭代器
b. 创建生成器 生成器 创建多个数据3、 查操作
a. 获取单个元素:next(迭代器) 迭代器中为空时去元素会报错
b. 遍历
c. 迭代器转换成序列
注意:不管以什么样的方式获取到了迭代器的元素,那么获取的元素一定会从迭代器中消失
>>> i1 = iter('abcdefg')
>>> i1
<str_iterator object at 0x0000028D5C5DA4C0>
>>> i2 = iter([1, 2, 3, 4])
>>> i2
<list_iterator object at 0x0000028D5C156CD0>
>>> next(i1)
'a'
>>> next(i1) # 此时迭代器中没有 a
'b'
>>> next(i2)
1
>>> for i in i2: # 此时迭代器中没有1
... print(i)
...
2
3
4
>>> i3 = iter('hello')
>>> result = list(i3)
>>> result
['h', 'e', 'l', 'l', 'o']
>>> next(i3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
# 报错 因为将 i3 转换成了列表,已经将元素全部取出,再从 i3 中取元素就会报错
生成器
生成器是容器型数据(具备创建多个数据的能力,而不是保存多个数据的能力)
1、特点(和迭代器一样)a. 打印生成器的时候无法查看迭代器中的所有元素,也不支持 len() 操作
b. 如果要使用生成器中的元素必须将该元素取出,元素取一个少一个,取出来的元素无法再放回迭代器
c. 生成器获取数据的方式和迭代器一样2、 创建生成器(生成器保存的不是数据本身,而是产生数据的算法(函数))
a. 调用 yield 关键字的函数,就可以得到一个生成器
b. 如果调用的函数中有 yield 关键字,调用函数的时候不会执行函数体,也不会获取函数返回值,而是得到一个生成器对象(函数调用表达式的值就是生成器)3、 定义生成器对应的函数(生成器创建数据的个数和数据的值,由在执行生成器对应的函数的函数体的时候会遇到几次yield,每次遇到yield的时候对应的数据来决定)
a. 执行函数体会遇到几次 yield ,对应的生成器就可以创建多少个数据
b. 每次遇到 yield,yield 后面的值是什么,对应的元素就是什么4、 生成器产生数据的原理
a. 调用函数创建生成器的时候不会执行函数体,获取生成器中的元素的时候才会执行函数体
b. 每次在执行函数体的时候从开始位置开始,执行到 yield 就停下来,并且将 yield 后面的数据作为获取到的元素
>>> def func1():
... print('=====')
... print('+++++')
... if False:
... yield
... return 100
...
>>> result = func1()
>>> f'return:{result}'
return:<generator object func1 at 0x0000028D5C5BCD60>
>>> def func2():
... yield 100
... yield 200
... yield 300
...
>>> gen2 = func2()
>>> next(gen2)
100
>>> next(gen2)
200
>>> def func3(subject):
... for x in range(1, 20):
... yield f'{subject}{x:0>3}'
...
>>> gen3 = func3('python')
>>> next(gen3)
'python001'
>>> for x in gen3:
... print(f'x:{x}')
...
x:python002
x:python003
x:python004
x:python005
x:python006
x:python007
x:python008
x:python009
x:python010
x:python011
x:python012
x:python013
x:python014
x:python015
x:python016
x:python017
x:python018
x:python019
def func4():
print('====1====')
yield 10 # 第二次就跳过,执行下行代码
print('====2====')
yield 20
print('====3====')
yield 30
gen4 = func4()
print(next(gen4))
print('----')
print(next(gen4))
# 运行结果为:
====1====
10
----
====2==== # 从 print('====2====') 开始执行
20
模块
前提
被使用的模块的模块名(py文件的文件名)必须符合变量名的要求
使用原则
先导入才能使用(能被别的模块使用的内容只能是全局变量)
导入方式一
import 模块名
导入指定模块,导入可以通过’模块名.xxx’的方式使用这个模块中所有的全局变量导入方式二
from 模块名 import 变量1,变量2,…
导入指定模块中的指定变量,导入后可以直接使用所有指定的变量导入方式三
from 模块名 import *
导入指定模块中所有变量导入方式四
import 模块名 as 新模块名
对模块重命名
导入模块的时候对模块重新命名,通过’新模块名.xxx’的方式只用模块中所有的全局变量导入方式五
b. from 模块名 import 变量1 as 新变量1,变量名2 as 新变量2,…
对导入的变量重命名
导入模块的原理
不管以什么样的方式导入了模块,或者模块中的内容,系统都会在导入模块的时候进入对应的模块,将模块中的代码全部执行
存在的问题:
可能存在在导入模块的时候执行一些完全没有必要执行的代码
解决方法:
导入模块的时候选择性执行代码,在被导入的模块中添加指定的 if 语句:if __name__ == '__main__'
将不需要被别的模块执行的代码放入到这个 if 语句中
test1.py
文件有如下内容:
a = 100
def func1():
print('test中')
name = 'test'
test2.py
# ==========导入方式1==========
import test1
print(test1.a)
print(test.name)
test1.func1()
# ==========导入方式2==========
from test1 import a, func1
print(a)
func1()
print(test1.name)
# 运行结果为:
100
test中
NameError: name 'test1' is not defined # 导入变量后
不能直接使用模块
# ==========导入方式3==========
from 模块名 import *
print(a)
print(name)
func1()
# ==========导入方式4==========
import test1 as t1
test1 = 22
print(t1.a, t1.name)
t1.func1()
# ==========导入方式5==========
from test1 import a as num_a, name as str_1
包
包就是包含__init__.py 文件的文件夹,用来管理 py 文件,对 py 文件按照特定的方式进行分类。
创建包
方法一
新建 Dictionary
手动添加__init__.py文件
方法二
新建 Python Package
导入包
a. 导入包
import 包名
导入指定的包(必须是包,文件夹无意义),导入后可以通过’包名.xxx‘的方式使用__init__.py文件夹中的所有内容。例如:import fileMamager
b.导入包中的模块
import 包名.模块名
导入包中的指定模块(文件夹也可以用),一般会重命名。例如:import fileManager.operateFile as file
c. 导入包中多个模块
from 包名 import 模块名1,模块名2,…
例如:from fileManager import operateFile, operateJson
d. 导入包中指定模块的指定内容
from 包名.模块名 import 变量1,变量2,…
例如:from fileManager.iperateFile import f1, f2, f3
包的应用
- 创建快捷键
from fileManager.images.operateImage import add_filter
- 封装通用工具
def remove_file(): print( '删除文件')
异常捕获
异常就是错误,执行程序的过程中,如果出现异常,会中断程序的执行(让程序提前结束)
exit() - 让程序正常退出
异常捕获
让程序在出现异常的时候,不崩溃,还可以接着往后执行
结构1
try:
代码段1(需要捕获异常的代码段)
except:
代码段2(捕获到异常需要执行的代码段)
执行过程:先执行代码段1,如果出现异常直接马上执行代码段2;如果没有出现异常,就不执行代码段2
捕获所有异常
结构2
try:
代码段1
except 异常类型:
代码段2
捕获指定异常
结构3
try:
代码段1
except (异常类型1,异常类型2,…):
代码段2
捕获多个指定异常
结构4
try:
代码段1
except 异常类型1:
代码段2_1
except 异常类型2:
代码段2_2
注意:不要滥用异常捕获。如果是因为使用不当导致程序出现异常,有希望出现异常可以继续执行才能使用异常捕获
>>> try:
... print('abc'[4])
... except:
... print('程序结束!')
...
程序结束!
>>> try:
... age = int(input('请输入年龄:'))
... if age >= 18:
... print('成年!')
... else:
... print('未成年!')
... except:
... print('年龄输入有误!')
...
请输入年龄:twenty
年龄输入有误!
...
请输入年龄:20
成年!