卷积网络中的优化方法

本文探讨了深度学习中解决多尺度问题的特征金字塔网络(FPN)和防止梯度消失的残差模块。FPN通过融合不同尺度的特征图来提升小物体检测性能,而残差模块通过引入跳跃连接解决了深度网络中的退化问题,确保信息有效传递,提高网络的训练效果和深层特征提取能力。
摘要由CSDN通过智能技术生成

1.特征金字塔FPN

通常情况下,由于检测网络是信息压缩的网络,所以会使得图像的分辨率逐渐降低,从而造成一些小物体在特征图上的有效信息较少,小物体的检测性能会逐渐下降,该现象通常被称作为多尺度问题。而特征金字塔作为解决该问题的传统方法,其思想主要就是将尺度的图像(也就是经过不同层卷积的特征图),从不同尺度的图像上生成不同尺度的特征,再将特征进行融合。具体结构如下所示:

2.2残差模块

引入该模块的原因主要在于,目前大多数网络结构在进行优化时首先需要考虑的就是需要将网络结构进行深化,从而能够提取到更为深层次的信息,从而实现更好的检测精度以及检测结果。

但是从下图中可以看出错误率在20层时候是最低的,添加到了56层反而更高了。是由于神经网络在反向传播过程中通过链式法则不断地反向传播更新梯度,而当网络层数加深时,梯度在传播过程中会逐渐消失,这将导致无法对前面网络层的权重进行有效的调整,网络层数越深,训练误差越高,导致训练和测试效果变差,这一现象称为退化。为了解决这一现象,通常在网络结构中引入残差模块。

 残差模块的结构如下图所示,该网络结构主要思想是在网络中增加了直连通道,引入了跳跃连接,这可以使上一个残差块的信息没有阻碍的流入到下一个残差块,提高了信息流通,并且也避免了由与网络过深所引起的消失梯度问题和退化问题。因此,该网络结构更深,能够更好的获取图像特征,从而获得更好的评价指标。(restnet网络中十分明显)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值