龙贝格积分与牛顿迭代

一.题目

​​​​​​​二.原理概述

龙贝格求积公式也称为逐次分半加速法。是数值计算方法之一,用以求解数值积分。是在梯形公式、和柯特斯公式之间关系的基础上,构造出一种加速计算积分的方法。 作为一种外推算法,在不增加计算量的前提下提高了误差的精度。

三.程序设计

#code by GuoJiLong
import numpy as np
import math

def f(x):
    y=(1/math.sqrt(2*math.pi))*math.exp(-x**2/2)
    return y



def Romberg(a,b,n):
    h=b-a
    T=np.zeros([n,n])
    T[0][0]=(h/2)*(f(a)+f(b))
    for i in range(1,n):
        fk=0
        for j in range (1,2**(i-1)+1):
            
            fk=fk+f(a+(2*j-1)*h/(2**i))
            T[i][0] =0.5*T[i-1][0]+(h/(2**i))*fk 
    for k in range(1,n):
        for m in range(k,n):
            T[m][k]=4**(k)/(4**(k)-1)*T[m][k-1]-1/(4**(k)-1)*T[m-1][k-1]
    return T[-1][-1]

def Guass(a,b,t):
    y=(1/math.sqrt(2*math.pi))*math.exp(-(((b-a)/2)*t+(a+b)/2)**2/2)
    return (b-a)*y/2


def main():    
    x=0.5
    x1=0.5
    fd=Romberg(0,x,10)-0.45
    A=np.zeros(10)
    A[0]=0.5
    R=[]
    G1=[]

    for i in range(1,10):
        R1=Romberg(0,x,20)
        x=x-(R1-0.45)/f(x)
        R.append(R1)
        A[i]=x
    for j in range(1,10):
        G=(5/9)*Guass(0,x1,-1*math.sqrt(15)/5)+(8/9)*Guass(0,x1,0)+(5/9)*Guass(0,x1,math.sqrt(15)/5)
        x1=x1-(G-0.45)/f(x1)
        G1.append(G)

    G=(5/9)*Guass(0,0.5,-1*math.sqrt(15)/5)+(8/9)*Guass(0,0.5,0)+(5/9)*Guass(0,0.5,math.sqrt(15)/5)
    print('\nRomberg近似值迭代所需要的各项积分值:', R) 
    print('\nGuass三点公式计算迭代所需要的各项积分值:',G1)
    print('\nNewton迭代法求得该非线性方程的根:', A[-1]) 

    



if __name__ == '__main__':
    main()

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值