逆元

本文介绍了两种求解模逆元的方法:费马小定理结合快速幂和扩展欧几里得算法。当模数为质数且与a互质时,可以利用费马小定理的逆元公式。快速幂算法能高效计算模幂运算。扩展欧几里得算法则通过解线性同余方程找到逆元,但当a与p不互质时无解。这两种方法在数论和密码学等领域有广泛应用。
摘要由CSDN通过智能技术生成


一、费马小定理求逆元

有这样的结论:当模数p为质数,且a和p互质时,a的逆元为a^{p-2},配合快速幂求解

AcWing 876. 快速幂求逆元

if(gcd(a,p)==1){
    b=qmi(a,p-2,p);
}
LL qmi(int a, int b, int p)
{
    LL res = 1;
    while(b){
        if(b & 1) res = res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

二、扩展欧几里得求逆元

由a*b=1(mod p)  ==> a*x+p*y=1  ,其中a,p已知,可用扩展欧几里得求解

如果a,p不互质,即d!=1,则逆元无解

注意:x,y有时候比较大,可以把x,y换成LL

int x,y;
exgcd(a,p,x,y);
x=(x%p+p)%p;
int exgcd(int a,int b,int &x,int &y){
    if(!b){
        x=1,y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vic.GoodLuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值