python 逻辑回归代码实现

1、创建模型

#读取文件
df = pd.read_csv('/2.csv')  

#数据预处理
df_norm = (df - df.min()) / (df.max() - df.min())

#构建特征数据
X = df_norm.drop('target',axis=1)

#构建预测数据
y = df_norm['target']

#划分训练集和测试集
from sklearn.model_selection import train_test_split  

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=1)

#构建模型并预测
from sklearn.linear_model import LogisticRegression 

#建立模型
model = LogisticRegression()  

#拟合数据
model.fit(X_train,y_train)  

#预测数据
y_pred = model.predict(X_test)

2、模型评估

from sklearn.metrics import confusion_matrix  

#计算混淆矩阵
cm = confusion_matrix(y_test,y_pred,labels=[0,1])

#混淆矩阵行和列求和
df_cm = pd.DataFrame(cm)

#计算混淆矩阵行的和
df_cm['Row_sum'] = df_cm.apply(lambda x: x.sum(), axis=1) 
 
#计算混淆矩阵列的和 
df_cm.loc['Col_sum'] = df_cm.apply(lambda x: x.sum())

#准确率计算
Acc = (df_cm.iloc[0,0]+df_cm.iloc[1,1])/df_cm.iloc[2,2]  

#精确度计算
Precision = df_cm.iloc[0,0]/df_cm.iloc[2,0]  

#召回率计算
Recall = df_cm.iloc[0,0]/df_cm.iloc[0,2]  

#F1计算
F1 = 2*Precision*Recall/(Precision+Recall)

3、混淆矩阵可视化

import seaborn as sn

#混淆矩阵可视化
ax = sn.heatmap(df_cm,annot=True,fmt='.20g')  

#添加标题
ax.set_title('confusion matrix')  

#添加x轴标签
ax.set_xlabel('predict') 

#添加y轴标签
ax.set_ylabel('true')

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值