Python一直被称为解释性语言,这使得其在执行速度方面不如编译型语言。但是,有许多方法可以优化Python的执行速度,使其能够更快、更高效地运行。本文将介绍五种Python加速的优化方案。
1、使用NumPy进行数组计算
NumPy是一种开源的Python库,其主要用于支持大型多维数组和矩阵计算。在NumPy中使用ndarray代替Python自带的list来存储数据,大幅提高了数组计算的速度。以下是一个使用Python自带list和使用NumPy来计算多维数组的例子:
# 使用Python自带列表
import time
start = time.time()
a = range(1000000)
b = range(1000000)
c = [a[i] + b[i] for i in range(len(a))]
end = time.time()
print('Using python list:', end-start)
# 使用NumPy数组
import numpy as np
start = time.time()
a = np.arange(1000000)
b = np.arange(1000000)
c = a + b
end