共享模型-无锁
CAS和volatile
private AtomicInteger balance; // AtomicInteger原子整数
while(true){
int prev = balance.get();
int next = prev - amount;
if(balance.compareAndSet(prev,next)){
break;
}
}
compareAndSet简称CAS,它内部是原子操作,可以保证原子性
CAS的底层是lock cmpxchg指令(X86架构),在单核和多核CPU下都能够保证【比较-交换】的原子性
获取变量时,为了保证该变量的可见性,需要用volatile修饰
CAS必须借助volatile才能读取到共享变量的最新值来实现【比较并交换】的效果
无锁情况下效率更高,即使重试失败,线程始终在高速运行没有停歇,而synchronized会让线程在没有获得锁的时候发生上下文切换,进入阻塞 。
但无锁情况下,因为线程要保持运行,需要额外CPU的支持,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还会导致上下文切换
CAS的特点
结合CAS和volatile可以实现无锁并发,适用于线程数少,多核CPU的场景
- CAS是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改变量,就算改了也没关系,再重试一下就行
- synchronized是基于悲观锁的思想:最悲观的估计,防着其他线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁才有机会
- CAS体现的是无锁并发、无阻塞并发
- 因为没有使用synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
- 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
原子整数
JUC并发包提供了:AtomicBoolean、AtomicInteger、AtomicLong
以AtomicInteger为例:
AtomicInteger i = new AtomicInteger(0); i=0 原子的
System.out.println(i.incrementAndGet());// 自增并获取值 ++i 打印1 i=1
System.out.println(i.getAndIncrement());// 获取并自增值 i++ 打印1 i=2
System.out.println(i.getAndAdd(5)); // 获取并增加 打印2 i=7
System.out.println(i.addAndGet(5)); // 增加并获取 打印12 i=12
// 读取值 设置值
System.out.println(i.updateAndGet(i -> i*10)); // 改变并获取 12*10 打印120 i=120
原子引用
AtomicReference、AtomicMarkReference、AtomicStampedReference
原子数组
AtomicIntegerArray、AtomicLongArray、AtomicReferenceArray
// supplier 提供者 无中生有 ()->无结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没有结果 (参数)->无结果 , BiConsumer (参数1,参数2)->无结果
private static <T> void demo(
Supplier<T> arraySupplier,
Function<T,Integer> lengthFun,
BiConsumer<T,Integer> putConsumer,
Consumer<T> printConsumer) {
List<Thread> ts = new ArrayList<>();
T array = arraySupplier.get();
int length = lengthFun.apply(array);
for(i = 0; i < length; i++){
// 每个线程对数组进行10000次操作
ts.add(new Thread(()->{
for(j = 0; j < 10000; j++){
putConsumer.accept(array,j%length);
}
}));
}
ts.forEach(t -> t.start()); // 启动所有线程
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}); // 等所有线程结束
printConsumer.accept(array);
}
public staic void main(String[] args){
demo(
()->new AtomicIntegerArray(10),
(array)->array.length(),
(array,index)->array[index]++,
(array)->System.out.println(array)
);
}
字段更新器
AtomicReferenceFieldUpdater 、AtomicIntegerFieldUpdater、 AtomicLongFieldUpdater
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现 异常
AtomicReferenceFieldUpdater updater = AtomicReferenceFieldUpdete.newUpdete(Student.class,String.class,"name")
// 类名 字段类型 字段名
Student stu = new Student();
updeter.compareAndSet(stu,null,"张三")
原子累加器
LongAdder、LongAccumulator
性能比AtomicInteger和AtomicLong高很多
LongAdder adder = new LongAdder();
adder.increment();
性能提升的原因:在竞争时,设置多个累加单元,Thread-0累加Cell[0],而Thread-1累加Cell[1]…最后将结果汇总。这样在累加时操作的不同Cell变量,减少了CAS重试失败,从而提升性能
Unsafe
Unsafe对象提供了非常底层的,操作内存、线程的方法,Unsafe对象不能直接调用,只能通过反射获得
Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");// 获得域对象theUnsafe
// 获得成员变量的值,theUnsafe是静态的从属于类 所以传入null
Unsafe unsafe = (Unsafe) theUnsafe.get(null);
// 获得域的偏移地址
long idOffset = unsafe.objectFieldOffset(Student.class.getDeclaredField("id"));
long nameOffset = unsafe.objectFieldOffset(Student.class.getDeclaredField("name"));
Student s = new Student();
unsafe.compareAndSwapInt(s,idOffset,0,1);
unsafe.compareAndSwapObject(s,nameOffset,null,"张三");