Tensorflow笔记(一)环境配置

在学习Tensorflow时,需配置相应的环境,以下以Tensorflow2.1版本为例,该方法学习了北京大学曹健老师的人工智能实践:Tensorflow笔记

第一步:安装Anaconda

我们在官网下载Anaconda python3.7版本(我安装时,官网已升级为3.8版本)

1.点击Get started,选择最下面的 Download Anaconda installers

2.网页拉到最下面,点击安装旧版本

 3.在下面找到Windows下的 Python 3.7,电脑多少位就选择相应的下载,我选择的是64位

4.下载完成后双击打开安装包

5.按照流程向下,在这一步时注意,两个都需勾选上

 6.等待安装

.

 7.依次点击,至finish完成,Anaconda安装完毕

第二步:安装Tensorflow

1.从电脑开始键打开Anaconda Prompt

 

2.输入一下创建一个名为TF2.1的环境,用python3.7版本

conda create-n TF2.1 python=3.7

 

 3.输入以下内容进入TF2.1环境

conda activate TF2.1

 

 4.输入以下内容安装英伟达的SDK10.1版本,之后确认y

conda install cudatoolkit= 10.1

 

 5.输入以下内容安装英伟达深度学习软件包7.6版本 ,之后确认y

conda install cudnn=7.6

 

如果你上面两条安装语句报错了,很可能是你的电脑硬件不支持英伟达GPU,可以跳过这两步,直接安装tensorflow

 6.输入以下内容,等待安装完成

pip install tensorflow==2.1

 

 7.依次输入

python
import tensorflow as tf
tf.__version__

第三步:安装pycharm

1.从官网下载社区版pycharm

2.双击安装文件,安装,除该处需要注意,其他直接next

 3.

 第四步:pycharm环境配置

1.打开pycharm

 2.

.

 3.

 3.点击ok,create新工程

4.

 

 5.输入以下代码测试

import tensorflow as tf

tensorflow_version = tf.__version__

gpu_available = tf.test.is_gpu_available()

print("tensorflow version:", tensorflow_version, "\tGPU available:", gpu_available)

a = tf. constant([1.0, 2.0], name="a")
b = tf.constant([1.0, 2.0], name="b")
result = tf.add(a, b, name="add")
print(result)

6.右击Run运行,如果出现以下内容,表示配置完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值