在学习Tensorflow时,需配置相应的环境,以下以Tensorflow2.1版本为例,该方法学习了北京大学曹健老师的人工智能实践:Tensorflow笔记
第一步:安装Anaconda
我们在官网下载Anaconda python3.7版本(我安装时,官网已升级为3.8版本)
1.点击Get started,选择最下面的 Download Anaconda installers
2.网页拉到最下面,点击安装旧版本
3.在下面找到Windows下的 Python 3.7,电脑多少位就选择相应的下载,我选择的是64位
4.下载完成后双击打开安装包
5.按照流程向下,在这一步时注意,两个都需勾选上
6.等待安装
.
7.依次点击,至finish完成,Anaconda安装完毕
第二步:安装Tensorflow
1.从电脑开始键打开Anaconda Prompt
2.输入一下创建一个名为TF2.1的环境,用python3.7版本
conda create-n TF2.1 python=3.7
3.输入以下内容进入TF2.1环境
conda activate TF2.1
4.输入以下内容安装英伟达的SDK10.1版本,之后确认y
conda install cudatoolkit= 10.1
5.输入以下内容安装英伟达深度学习软件包7.6版本 ,之后确认y
conda install cudnn=7.6
如果你上面两条安装语句报错了,很可能是你的电脑硬件不支持英伟达GPU,可以跳过这两步,直接安装tensorflow
6.输入以下内容,等待安装完成
pip install tensorflow==2.1
7.依次输入
python
import tensorflow as tf
tf.__version__
第三步:安装pycharm
1.从官网下载社区版pycharm
2.双击安装文件,安装,除该处需要注意,其他直接next
3.
第四步:pycharm环境配置
1.打开pycharm
2.
.
3.
3.点击ok,create新工程
4.
5.输入以下代码测试
import tensorflow as tf
tensorflow_version = tf.__version__
gpu_available = tf.test.is_gpu_available()
print("tensorflow version:", tensorflow_version, "\tGPU available:", gpu_available)
a = tf. constant([1.0, 2.0], name="a")
b = tf.constant([1.0, 2.0], name="b")
result = tf.add(a, b, name="add")
print(result)
6.右击Run运行,如果出现以下内容,表示配置完成