子空间聚类(Subspace Clustering)是一种数据挖掘技术,用于在高维数据集中发现低维结构的聚类。
与传统聚类算法不同,子空间聚类算法不假设所有的数据点都位于同一个全局空间中,而是允许数据点在数据的子空间中形成簇。
在高维数据中,由于维度的增加,数据点之间的距离变得不那么有意义,这导致传统的聚类算法(如Kmeans)效果不佳。
子空间聚类通过以下步骤来解决这个问题:
- 1.子空间探测:算法首先尝试在高维数据集中识别出可能包含簇的子空间。这些子空间是数据集中的低维平面或超平面,其中数据点的分布呈现出某种模式或结构。也就是在高维数据中寻找低维结构的聚类
- 2.特征选择:在每个探测到的子空间中,算法需要确定哪些特征(或属性)对于描述该子空间中的簇是重要的。这可能涉及到特征选择或特征加权的技术。
- 3.簇内聚类:一旦确定了子空间和相关特征,算法就在这些子空间中执行聚类操作,以发现数据点的局部结构。
- 4.簇合并:在某些情况下,算法可能还需要将多个子空间中的簇进行合并,以形成全局的聚类结果。
- 5.迭代优化:子空间聚类通常是一个迭代过程,算法会不断调整子空间的选择和簇的划分,直到满足某个停止条件。
子空间聚类算法的例子包括但不限于:
- CLIQUE:一种经典的子空间聚类算法,它通过迭代地调整子空间的维度和特征选择来发现簇。
- SUBCLU:一种基于网格的子空间聚类方法,它使用基于密度的聚类技术。
- STINGRAY:一种使用统计信息来探测子空间并进行聚类的算法。
子空间聚类在许多领域都有应用,如生物信息学、文本挖掘、图像处理和推荐系统等。它特别适用于那些数据具有内在低维结构,但这些结构在全局空间中不明显的情况。