Ada-GTO(Adaptive Gorilla Troops Optimizer,自适应大猩猩部队优化器)

Ada-GTO(Adaptive Gorilla Troops Optimizer,自适应大猩猩部队优化器) 的详细介绍,包括其设计原理、关键改进、算法流程以及在癌症多组学数据整合中的具体应用。


1. 算法背景

GTO(Gorilla Troops Optimizer) 是一种受大猩猩群体社会行为启发的元启发式算法,模拟以下行为:

  • 迁移(探索新领地)
  • 竞争(争夺领导权)
  • 协作(群体保护)

Ada-GTO 是GTO的改进版本,通过引入 自适应权重Lévy Flight策略,增强其在复杂优化问题(如高维非凸的NMF初始化)中的性能。


2. 核心改进

(1)自适应权重策略
  • 动态调整探索与开发的平衡
    在迭代过程中,根据当前进度自动调整搜索步长,早期侧重全局探索,后期侧重局部开发。
    % Lévy Flight步长公式(自适应衰减)
    step = u / (abs(v)^(1/beta)) * (1 - t/max_iter); 
    
    • beta:Lévy分布参数(通常取1.4)
    • t:当前迭代次数,max_iter:总迭代次数
    • u 和 v 是两个独立的标准正态分布(高斯分布)随机变量: u ∼ N ( 0 , σ 2 ) , v ∼ N ( 0 , 1 ) u \sim \mathcal{N}(0, \sigma^2), \quad v \sim \mathcal{N}(0, 1) uN(0,σ2),vN(0,1)
(2)Lévy Flight移动
  • 特点:结合长距离跳跃与短距离精细搜索,避免陷入局部最优。
  • 数学形式
    Step ∼ u ∣ v ∣ 1 / β , u ∼ N ( 0 , σ 2 ) , v ∼ N ( 0 , 1 ) \text{Step} \sim \frac{u}{|v|^{1/\beta}}, \quad u \sim N(0,\sigma^2), v \sim N(0,1) Stepv1/βu,uN(0,σ2),vN(0,1)
    • 其中 σ = ( Γ ( 1 + β ) sin ⁡ ( π β / 2 ) β ⋅ Γ ( ( 1 + β ) / 2 ) ⋅ 2 ( β − 1 ) / 2 ) 1 / β \sigma = \left(\frac{\Gamma(1+\beta) \sin(\pi\beta/2)}{\beta \cdot \Gamma((1+\beta)/2) \cdot 2^{(\beta-1)/2}}\right)^{1/\beta} σ=(βΓ((1+β)/2)2(β1)/2Γ(1+β)sin(πβ/2))1/β
(3)双阶段优化
  1. 探索阶段:广泛搜索解空间(类似大猩猩群体迁移)。
  2. 开发阶段:围绕当前最优解精细调整(类似争夺“银背大猩猩”领导权)。

3. 算法流程

伪代码步骤
1. 初始化种群(大猩猩位置随机分布)
2. While 未达到最大迭代次数:
   a. 计算自适应Lévy步长
   b. 探索阶段:
      - 随机选择个体交互或全局搜索
      - 更新候选解: X_new = X_old ± Lévy_step * (X_rand - X_old)
   c. 开发阶段:
      - 若当前解质量高(适应度优),则围绕其局部搜索
      - 更新候选解: X_new = X_old + 权重 * (X_best - X_old)
   d. 评估候选解,更新全局最优
3. 返回最优解
关键公式
  • 位置更新(探索阶段)
    G X ( t + 1 ) = { ( U B − L B ) ⋅ rand + L B if rand < p ( rand − C ) ⋅ X rand ( t ) + L ⋅ H if rand ≥ 0.5 X ( t ) − L ⋅ ( L ⋅ ( X ( t ) − G X rand ( t ) ) + rand ⋅ ( X ( t ) − G X rand ( t ) ) ) otherwise GX(t+1) = \begin{cases} (UB - LB) \cdot \text{rand} + LB & \text{if rand} < p \\ (\text{rand} - C) \cdot X_{\text{rand}}(t) + L \cdot H & \text{if rand} \geq 0.5 \\ X(t) - L \cdot (L \cdot (X(t) - GX_{\text{rand}}(t)) + \text{rand} \cdot (X(t) - GX_{\text{rand}}(t))) & \text{otherwise} \end{cases} GX(t+1)= (UBLB)rand+LB(randC)Xrand(t)+LHX(t)L(L(X(t)GXrand(t))+rand(X(t)GXrand(t)))if rand<pif rand0.5otherwise

    • 根据随机数 rand 的值选择三种不同的位置更新策略
    • CLH 为控制参数,p 为探索概率阈值。
    • UB 和 LB:变量的上界和下界(如 UB=[1,1], LB=[0,0])。
    • X r a n d ( t ) X_{rand}(t) Xrand(t):当前种群中随机选择一个个体的位置。
      • C 和 L:动态调整的参数
      • H:历史最优位置或群体中心
    • C:控制探索强度,随迭代衰减 : C = ( 1 − t max_iter ) ⋅ cos ⁡ ( 2 ⋅ rand ) C = \left(1 - \frac{t}{\text{max\_iter}}\right) \cdot \cos(2 \cdot \text{rand}) C=(1max_itert)cos(2rand)
    • L:随机扰动因子: L = C ⋅ l , l ∈ [ − 1 , 1 ] (随机数) L = C \cdot l, \quad l \in [-1,1] \text{(随机数)} L=Cl,l[1,1](随机数)
      在这里插入图片描述
  • 自适应权重(开发阶段)
    Weight = ( ϵ 1 − ϵ 1 ⋅ t MaxIter ) ( 1 − t / MaxIter ) \text{Weight} = \left(\epsilon_1 - \epsilon_1 \cdot \frac{t}{\text{MaxIter}}\right)^{(1-t/\text{MaxIter})} Weight=(ϵ1ϵ1MaxItert)(1t/MaxIter)

    • ϵ 1 \epsilon_1 ϵ1 控制初始权重(通常 ϵ 1 = 1 \epsilon_1=1 ϵ1=1, ϵ 2 = 2 \epsilon_2=2 ϵ2=2)。

4. 在sparse-jNMF中的应用

优化目标

最小化多组学数据的联合重构误差,并施加稀疏约束:
min ⁡ W , H i ∑ i = 1 I ∥ A i − W H i ∥ F 2 + γ ∥ W ∥ 1 \min_{W,H_i} \sum_{i=1}^{I} \|A_i - WH_i\|_F^2 + \gamma \|W\|_1 W,Himini=1IAiWHiF2+γW1

  • W:共享基矩阵(样本-亚型关系)
  • H i H_i Hi:各数据特有的系数矩阵
Ada-GTO的作用
  1. 初始化优化
    • 用Ada-GTO生成高质量的初始 W H i H_i Hi,替代随机初始化。
    • 避免NMF因非凸性陷入局部最优。
  2. 提升收敛速度
    • 自适应步长减少无效搜索,加速收敛。
代码实现(MATLAB核心)
function W_init = ada_gto_for_nmf(data, k)
    % 定义目标函数(NMF损失 + 稀疏项)
    objective = @(W_flat) norm(data - reshape(W_flat, [m,k])*H, 'fro')^2 + gamma*norm(W_flat,1);
    % Ada-GTO优化
    W_flat = ada_gto(objective, m*k, 0, 1, 100); % 变量维度m×k,边界[0,1]
    W_init = reshape(W_flat, [m, k]);
end

5. 与传统GTO的对比

特性传统GTOAda-GTO
搜索策略固定随机步长Lévy Flight + 自适应权重
收敛性易陷入局部最优全局搜索能力更强
参数敏感性依赖手动调参动态调整参数,鲁棒性更高
适用场景低维优化问题高维非凸问题(如NMF初始化)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值