基本概念
二阶协变导数是在黎曼几何中用于描述张量场沿着流形上曲线变化率的一种数学工具
。
在非欧几里得空间中,向量或张量的导数不像在平坦空间中那样直接,因为这些空间中没有全局的坐标系统。协变导数
提供了一种在流形
上做微分运算的方式
,它能够考虑到流形的曲率
,使得导数操作在不同点之间保持协调。
对于一个光滑函数
f
f
f 在流形M上的二阶协变导数
,我们有以下公式:
∇ a ∇ b f = g a c g b d ∇ c ∇ d f \nabla^a \nabla^b f = g^{ac}g^{bd}\nabla_c\nabla_d f ∇a∇bf=gacgbd∇c∇df
其中,
g
a
c
g^{ac}
gac 和
g
b
d
g^{bd}
gbd 是流形M上度规张量的逆
,而
∇
c
∇
d
f
\nabla_c\nabla_d f
∇c∇df 是
f
f
f 的二阶协变导数
。在标准坐标系下,这相当于海森正则的F范数表示。
例子
用一个具体的例子来解释二阶协变导数。
考虑一个二维球面S2,上面有一个函数
f
f
f,比如
f
f
f 可以是球面上某点的高度
。
在球面上,我们可以定义一个局部坐标系
(θ,φ),其中θ是极角
,φ是方位角
。那么,函数
f
f
f 的二阶协变导数
就可以写作:
∇ a ∇ b f = g θ θ g θ θ ∇ θ ∇ θ f + 2 g θ θ g φ φ ∇ θ ∇ φ f + g φ φ g φ φ ∇ φ ∇ φ f \nabla^a \nabla^b f = g^{θθ}g^{θθ}\nabla_θ\nabla_θ f + 2g^{θθ}g^{φφ}\nabla_θ\nabla_φ f + g^{φφ}g^{φφ}\nabla_φ\nabla_φ f ∇a∇bf=gθθgθθ∇θ∇θf+2gθθgφφ∇θ∇φf+gφφgφφ∇φ∇φf
这里的
g
θ
θ
g^{θθ}
gθθ 和
g
φ
φ
g^{φφ}
gφφ 是度规张量的逆元素
,依赖于 θ 和 φ 的值。而
∇
θ
∇
θ
f
\nabla_θ\nabla_θ f
∇θ∇θf、
∇
θ
∇
φ
f
\nabla_θ\nabla_φ f
∇θ∇φf 和
∇
φ
∇
φ
f
\nabla_φ\nabla_φ f
∇φ∇φf 则是函数
f
f
f 在 θ 和 φ 方向上的二阶协变导数。
在数值上,我们可以近似计算
这个二阶协变导数。比如,如果我们要计算在某一点
x
x
x 上的函数
f
f
f 的二阶协变导数
,我们可以找到
x
x
x 的 k个最近邻
,然后计算
f
f
f 在这些点上的函数值差异
,以此来估计二阶导数的大小
。
具体来说,我们可以通过以下公式近似计算
f
f
f 的二阶协变导数:
H ( f ) ≈ ∑ i = 1 n ∑ j ∈ N k ( i ) ( f ( x i ) − f ( x j ) ) 2 \mathcal{H}(f) \approx \sum_{i=1}^{n} \sum_{j \in N_k(i)} (f(x_i) - f(x_j))^2 H(f)≈i=1∑nj∈Nk(i)∑(f(xi)−f(xj))2
这里,
N
k
(
i
)
N_k(i)
Nk(i) 是点
x
i
x_i
xi 的 k个最近邻点的集合
,
f
(
x
i
)
f(x_i)
f(xi) 和
f
(
x
j
)
f(x_j)
f(xj)分别是函数
f
f
f 在
x
i
x_i
xi 和
x
j
x_j
xj 点的值。
通过计算这些点上函数值的平方差的总和
,我们可以得到一个关于函数
f
f
f 的二阶导数的近似估计。