什么是二阶协变导数?

基本概念

二阶协变导数是在黎曼几何中用于描述张量场沿着流形上曲线变化率的一种数学工具

在非欧几里得空间中,向量或张量的导数不像在平坦空间中那样直接,因为这些空间中没有全局的坐标系统。协变导数提供了一种在流形做微分运算的方式,它能够考虑到流形的曲率,使得导数操作在不同点之间保持协调。

对于一个光滑函数 f f f 在流形M上的二阶协变导数,我们有以下公式:

∇ a ∇ b f = g a c g b d ∇ c ∇ d f \nabla^a \nabla^b f = g^{ac}g^{bd}\nabla_c\nabla_d f abf=gacgbdcdf

其中, g a c g^{ac} gac g b d g^{bd} gbd 是流形M上度规张量的逆,而 ∇ c ∇ d f \nabla_c\nabla_d f cdf f f f二阶协变导数。在标准坐标系下,这相当于海森正则的F范数表示。

例子

用一个具体的例子来解释二阶协变导数。
考虑一个二维球面S2,上面有一个函数 f f f,比如 f f f 可以是球面上某点的高度

在球面上,我们可以定义一个局部坐标系(θ,φ),其中θ是极角,φ是方位角。那么,函数 f f f二阶协变导数就可以写作:

∇ a ∇ b f = g θ θ g θ θ ∇ θ ∇ θ f + 2 g θ θ g φ φ ∇ θ ∇ φ f + g φ φ g φ φ ∇ φ ∇ φ f \nabla^a \nabla^b f = g^{θθ}g^{θθ}\nabla_θ\nabla_θ f + 2g^{θθ}g^{φφ}\nabla_θ\nabla_φ f + g^{φφ}g^{φφ}\nabla_φ\nabla_φ f abf=gθθgθθθθf+2gθθgφφθφf+gφφgφφφφf

这里的 g θ θ g^{θθ} gθθ g φ φ g^{φφ} gφφ度规张量的逆元素,依赖于 θ 和 φ 的值。而 ∇ θ ∇ θ f \nabla_θ\nabla_θ f θθf ∇ θ ∇ φ f \nabla_θ\nabla_φ f θφf ∇ φ ∇ φ f \nabla_φ\nabla_φ f φφf 则是函数 f f f 在 θ 和 φ 方向上的二阶协变导数。

在数值上,我们可以近似计算这个二阶协变导数。比如,如果我们要计算在某一点 x x x 上的函数 f f f二阶协变导数,我们可以找到 x x xk个最近邻,然后计算 f f f 在这些点上的函数值差异,以此来估计二阶导数的大小
具体来说,我们可以通过以下公式近似计算 f f f二阶协变导数:

H ( f ) ≈ ∑ i = 1 n ∑ j ∈ N k ( i ) ( f ( x i ) − f ( x j ) ) 2 \mathcal{H}(f) \approx \sum_{i=1}^{n} \sum_{j \in N_k(i)} (f(x_i) - f(x_j))^2 H(f)i=1njNk(i)(f(xi)f(xj))2

这里, N k ( i ) N_k(i) Nk(i) 是点 x i x_i xik个最近邻点的集合 f ( x i ) f(x_i) f(xi) f ( x j ) f(x_j) f(xj)分别是函数 f f f x i x_i xi x j x_j xj 点的值。

通过计算这些点上函数值的平方差的总和,我们可以得到一个关于函数 f f f二阶导数的近似估计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值