多视图潜在子空间的非负矩阵分解方法(Multi-view Non-negative Matrix Factorization, Multi-NMF)是一种用于处理多视图数据集的非负矩阵分解(NMF)的扩展。
在这种方法中,每个视图代表了对同一数据集的不同观测或表示。
Multi-NMF旨在找到一个共同的潜在子空间
,这个子空间能够同时解释所有视图中的数据
,从而实现对数据的多角度理解。
Multi-NMF的目标函数
假设我们有
K
K
K 个不同的视图,每个视图
V
k
V_k
Vk (
k
=
1
,
2
,
.
.
.
,
K
k = 1, 2, ..., K
k=1,2,...,K )都是一个非负矩阵,Multi-NMF的目标是将每个视图分解为一个基矩阵
W
k
W_k
Wk 和一个共享的混和矩阵
H
H
H 的乘积,即
V
k
≈
W
k
H
V_k \approx W_kH
Vk≈WkH ,其中
H
H
H 是所有视图共享的矩阵
,用于表示跨视图的共同信息。
Multi-NMF的目标函数可以表示为:
min W k , H ∑ k = 1 K ∥ V k − W k H ∥ F 2 \min_{W_k, H} \sum_{k=1}^{K} \|V_k - W_kH\|_F^2 Wk,Hmink=1∑K∥Vk−WkH∥F2
其中,
-
V
k
V_k
Vk :表示第
k
k
k 个视图的
数据矩阵。
-
W
k
W_k
Wk :表示第
k
k
k 个视图的
基矩阵
,用于捕捉该视图的特定特征。 -
H
H
H :表示
共享的混和矩阵
,用于表示所有视图的共同信息。
-
∥
⋅
∥
F
\| \cdot \|_F
∥⋅∥F :表示Frobenius范数,用来
度量矩阵之间的差异
。
公式解释
-
V
k
V_k
Vk :第
k
k
k 个视图的
非负数据矩阵
,维度通常是 N × M k N \times M_k N×Mk ,其中 N N N 是样本数量, M k M_k Mk 是第 k k k 个视图的特征数量。 -
W
k
W_k
Wk :
基矩阵
,维度为 N × R N \times R N×R ,其中 R R R 是潜在因子的数量,它表示了每个视图的潜在结构。 -
H
H
H :
混和矩阵
,维度为 R × M R \times M R×M ,其中 M M M 是所有视图特征的总和,但因为它被共享,所以实际上它的列数对应于所有视图的共同潜在因子数量。
-
∥
V
k
−
W
k
H
∥
F
2
\|V_k - W_kH\|_F^2
∥Vk−WkH∥F2 :Frobenius范数下的
重建误差
,衡量了原始数据矩阵 V k V_k Vk 和由 W k W_k Wk 和 H H H重构的矩阵之间的差异
,目标是最小化这个误差。
Multi-NMF的求解
Multi-NMF的求解通常通过迭代优化算法完成,如梯度下降、交替最小二乘法(ALS)或其他适当的优化策略。
在每一轮迭代中,算法会交替地更新 W k W_k Wk 和 H H H ,直到达到某个停止准则(如收敛或达到最大迭代次数)。
Multi-NMF的应用
Multi-NMF在多个领域中都有应用,包括但不限于:
- 生物信息学:处理基因表达数据、蛋白质序列和其他生物学数据,其中不同的实验或技术可能产生不同的视图。
- 计算机视觉:处理图像的不同特征,如颜色、纹理、形状等。
- 推荐系统:融合用户行为历史、用户人口统计信息和项目属性等多源信息。
- 自然语言处理:分析不同来源或不同语言的文本数据。
Multi-NMF通过同时考虑多视图数据,可以提供更丰富和更全面的数据表示,有助于提高模型的准确性和泛化能力。