基于非负矩阵分解的多视图学习——多视图潜在子空间的非负矩阵分解方法(Multi-view Non-negative Matrix Factorization, Multi-NMF)

多视图潜在子空间的非负矩阵分解方法(Multi-view Non-negative Matrix Factorization, Multi-NMF)是一种用于处理多视图数据集的非负矩阵分解(NMF)的扩展。

在这种方法中,每个视图代表了对同一数据集的不同观测或表示。Multi-NMF旨在找到一个共同的潜在子空间这个子空间能够同时解释所有视图中的数据,从而实现对数据的多角度理解。

Multi-NMF的目标函数

假设我们有 K K K 个不同的视图,每个视图 V k V_k Vk k = 1 , 2 , . . . , K k = 1, 2, ..., K k=1,2,...,K )都是一个非负矩阵,Multi-NMF的目标是将每个视图分解为一个基矩阵 W k W_k Wk一个共享的混和矩阵 H H H 的乘积,即 V k ≈ W k H V_k \approx W_kH VkWkH ,其中 H H H所有视图共享的矩阵,用于表示跨视图的共同信息。

Multi-NMF的目标函数可以表示为:

min ⁡ W k , H ∑ k = 1 K ∥ V k − W k H ∥ F 2 \min_{W_k, H} \sum_{k=1}^{K} \|V_k - W_kH\|_F^2 Wk,Hmink=1KVkWkHF2

其中,

  • V k V_k Vk :表示第 k k k 个视图的数据矩阵。
  • W k W_k Wk :表示第 k k k 个视图的基矩阵,用于捕捉该视图的特定特征。
  • H H H :表示共享的混和矩阵,用于表示所有视图的共同信息。
  • ∥ ⋅ ∥ F \| \cdot \|_F F :表示Frobenius范数,用来度量矩阵之间的差异

公式解释

  • V k V_k Vk :第 k k k 个视图的非负数据矩阵,维度通常是 N × M k N \times M_k N×Mk ,其中 N N N 是样本数量, M k M_k Mk 是第 k k k 个视图的特征数量。
  • W k W_k Wk基矩阵,维度为 N × R N \times R N×R ,其中 R R R 是潜在因子的数量,它表示了每个视图的潜在结构。
  • H H H混和矩阵,维度为 R × M R \times M R×M ,其中 M M M 是所有视图特征的总和,但因为它被共享,所以实际上它的列数对应于所有视图的共同潜在因子数量。
  • ∥ V k − W k H ∥ F 2 \|V_k - W_kH\|_F^2 VkWkHF2 :Frobenius范数下的重建误差,衡量了原始数据矩阵 V k V_k Vk 和由 W k W_k Wk H H H 重构的矩阵之间的差异,目标是最小化这个误差。

Multi-NMF的求解

Multi-NMF的求解通常通过迭代优化算法完成,如梯度下降、交替最小二乘法(ALS)或其他适当的优化策略。

在每一轮迭代中,算法会交替地更新 W k W_k Wk H H H ,直到达到某个停止准则(如收敛或达到最大迭代次数)。

Multi-NMF的应用

Multi-NMF在多个领域中都有应用,包括但不限于:

  • 生物信息学:处理基因表达数据、蛋白质序列和其他生物学数据,其中不同的实验或技术可能产生不同的视图。
  • 计算机视觉:处理图像的不同特征,如颜色、纹理、形状等。
  • 推荐系统:融合用户行为历史、用户人口统计信息和项目属性等多源信息。
  • 自然语言处理:分析不同来源或不同语言的文本数据。

Multi-NMF通过同时考虑多视图数据,可以提供更丰富和更全面的数据表示,有助于提高模型的准确性和泛化能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值