基于子空间的多视图聚类算法——多样性诱导的多维子空间聚类(Diversity-induced Multi-Dimensional Subspace Clustering, DiMSC)

多样性诱导的多维子空间聚类(Diversity-induced Multi-Dimensional Subspace Clustering, DiMSC)算法是一种先进的多视图聚类技术,它通过在不同维度上探索数据的潜在结构来提升聚类效果。

DiMSC的核心理念是利用数据的多样性,即从多个角度或维度来理解和表示数据,以捕捉其复杂性和细微差别。

下面我们将详细介绍DiMSC算法的原理、步骤和涉及的公式。

DiMSC算法概述

DiMSC算法首先在每个视图上独立执行子空间聚类,之后通过一种特殊机制来融合这些视图上的结果,以期得到更全面和更准确的聚类结果。

该机制利用了数据的多样性,确保了不同视图的信息互补而非重复。

关键步骤

1. 单视图子空间聚类

在每个视图上独立执行子空间聚类,得到一系列的表示矩阵相似度矩阵。

2. 多视图融合

融合不同视图的结果,通常涉及到加权平均、共同字典学习、深度学习或其他集成方法

3. 多维子空间探索

在融合阶段,DiMSC算法会尝试在不同的维度上探索数据的潜在结构,而不是仅仅依赖于单个最优视图。

4. 多样性诱导

通过引入多样性诱导机制,确保在融合过程中不同视图的信息得到充分利用,避免信息冗余。

公式与解释

单视图子空间聚类

在视图 v v v 上,通过自表示学习表示矩阵 C v C_v Cv,目标函数为:
min ⁡ C v 1 2 ∥ X v − X v C v ∥ F 2 + λ ∥ C v ∥ 1 \min_{C_v} \frac{1}{2} \|X_v - X_v C_v\|_F^2 + \lambda \|C_v\|_1 Cvmin21XvXvCvF2+λCv1
其中,

  • X v X_v Xv 是第 v v v 个视图的数据矩阵;
  • C v C_v Cv 是学习到的表示矩阵,反映数据点之间的线性关系;
  • λ \lambda λ 是正则化参数,控制稀疏程度;
  • ∥ ⋅ ∥ F \|\cdot\|_F F 表示矩阵的弗罗贝尼乌斯范数;
  • ∥ ⋅ ∥ 1 \|\cdot\|_1 1 表示矩阵的 l 1 l_1 l1 范数,用于促进稀疏性
多视图融合

融合不同视图的表示矩阵,目标函数可以是加权平均的形式:
C = ∑ v = 1 V w v C v C = \sum_{v=1}^V w_v C_v C=v=1VwvCv
其中,

  • V V V 是视图的总数;
  • w v w_v wv 是第 v v v 个视图的权重,通常需要根据视图的重要性和质量来设置。
多样性诱导

多样性诱导机制确保不同视图的贡献既独立又互补,具体公式和实施细节取决于具体的算法实现。

通常,这会涉及到额外的正则化项或优化目标,以鼓励不同视图表示矩阵之间的差异性。

公式的作用

  • 单视图子空间聚类:公式 C v C_v Cv 的学习确保了数据点可以在各自视图的子空间中被有效表示,这是后续融合的基础。
  • 多视图融合:通过加权平均或更复杂的融合策略,公式 C C C 将不同视图的信息综合在一起,提高了聚类的准确性和稳定性。
  • 多样性诱导:虽然具体的公式可能因实现而异,但多样性诱导的目的是确保每个视图的独特信息都被充分考虑,从而避免了信息的冗余和损失。

DiMSC算法通过在多维子空间中探索数据的潜在结构,并利用数据的多样性,能够在处理多源异构数据时提供更准确和全面的聚类结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值