力扣热题100题解(c++)—矩阵

73.矩阵置零

给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
在这里插入图片描述
在这里插入图片描述

    int m = matrix.size();      // 行数
    int n = matrix[0].size();   // 列数
    bool firstRowZero = false;  // 标记第一行是否包含 0
    bool firstColZero = false;  // 标记第一列是否包含 0

    // 1. 检查第一行和第一列是否包含 0
    for (int j = 0; j < n; ++j) 
    {
        if (matrix[0][j] == 0) 
        {
            firstRowZero = true;
            break;
        }
    }
    for (int i = 0; i < m; ++i) 
    {
        if (matrix[i][0] == 0) 
        {
            firstColZero = true;
            break;
        }
    }

    // 2. 使用第一行和第一列作为标记位
    for (int i = 1; i < m; ++i) 
    {
        for (int j = 1; j < n; ++j) 
        {
            if (matrix[i][j] == 0) 
            {
                matrix[i][0] = 0; // 标记第 i 行需要置零
                matrix[0][j] = 0; // 标记第 j 列需要置零
            }
        }
    }

    // 3. 根据标记位将对应的行和列置零(除了第一行和第一列)
    for (int i = 1; i < m; ++i) 
    {
        for (int j = 1; j < n; ++j) 
        {
            if (matrix[i][0] == 0 || matrix[0][j] == 0) 
            {
                matrix[i][j] = 0;
            }
        }
    }

    // 4. 根据 firstRowZero 和 firstColZero 将第一行和第一列置零
    if (firstRowZero) 
    {
        for (int j = 0; j < n; ++j) 
        {
            matrix[0][j] = 0;
        }
    }
    if (firstColZero) 
    {
        for (int i = 0; i < m; ++i) 
        {
            matrix[i][0] = 0;
        }
    }

54.螺旋矩阵

给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
在这里插入图片描述

    vector<int> result;
    if (matrix.empty()) 
    {
        return result;
    }

    int top = 0, bottom = matrix.size() - 1;
    int left = 0, right = matrix[0].size() - 1;

    while (top <= bottom && left <= right) 
    {
        // 1. 从左到右
        for (int i = left; i <= right; ++i) 
        {
            result.push_back(matrix[top][i]);
        }
        top++;

        // 2. 从上到下
        for (int i = top; i <= bottom; ++i) 
        {
            result.push_back(matrix[i][right]);
        }
        right--;

        if (top <= bottom && left <= right) 
        { // 避免重复添加
            // 3. 从右到左
            for (int i = right; i >= left; --i) 
            {
                result.push_back(matrix[bottom][i]);
            }
            bottom--;

            // 4. 从下到上
            for (int i = bottom; i >= top; --i) 
            {
                result.push_back(matrix[i][left]);
            }
            left++;
        }
    }

    return result;

48.旋转图像

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
在这里插入图片描述
在这里插入图片描述

    int n = matrix.size();

    // 1. 转置矩阵
    for (int i = 0; i < n; ++i) 
    {
        for (int j = i + 1; j < n; ++j) 
        { // 注意 j 从 i+1 开始,避免重复交换
            swap(matrix[i][j], matrix[j][i]);
        }
    }

    // 2. 反转每一行
    for (int i = 0; i < n; ++i) 
    {
        reverse(matrix[i].begin(), matrix[i].end());
    }

240.搜索二维矩阵(二)

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
在这里插入图片描述
在这里插入图片描述

    if (matrix.empty() || matrix[0].empty()) 
    {
        return false;
    }

    int m = matrix.size();    // 行数
    int n = matrix[0].size(); // 列数

    int row = 0;           // 从第一行开始
    int col = n - 1;       // 从最后一列开始

    while (row < m && col >= 0) 
    {
        if (matrix[row][col] == target) 
        {
            return true;  // 找到了目标值
        } 
        else if (matrix[row][col] < target) 
        {
            row++;          // 目标值更大,向下移动一行
        } 
        else 
        {
            col--;          // 目标值更小,向左移动一列
        }
    }

    return false;  // 没有找到目标值
<think>好的,我现在需要处理用户关于LeetCode100的查询。首先,用户希望找到相关的解思路和讲解。根据用户提供的引用内容,特别是引用[1]和引用[2],我需要先确认这些资源是否足够详细,或者是否需要补充其他信息。 用户提到引用[1]中有一个题解列表,包括LeetCode 35. 搜索插入位置,这涉及二分查找的变种。用户可能希望得到具体的解方法,比如如何处理目标值不存在的情况,返回left指针的位置。同时,引用[2]链接到一篇可能更详细的文章,但需要确认链接是否有效,或者是否有其他资源可用。 接下来,我需要考虑用户的需求是否被现有引用内容满足。如果现有的题解列表和文章足够,那么可以直接推荐这些资源。但可能还需要补充一些常见的解策略,比如双指针、动态规划等,这些在100中常见的方法。 另外,用户的问中还可能涉及不同型的分类,比如九、双指针/三指针(共3),这可能意味着用户希望按型分类学习。因此,在回答中需要将问按类型归类,并提供每个类型的典型目和解思路。 还需要检查是否有其他常见的100目未被提及,比如两数之和、链表反转等,确保回答的全面性。同时,要确保回答符合之前的系统级指令,正确使用LaTeX格式,并生成相关问。 最后,生成的相关问需要围绕用户可能的后续疑问,比如如何准备刷、时间空间复杂度优化等,帮助用户进一步学习。</think>[用户可见层] # LeetCode100思路与资源指引 ## 一、核心解方法分类 根据目类型可分为: 1. **二分查找**(如第35) - 变种型处理技巧:当$target$不存在时返回插入位置,需理解循环终止时$left$和$right$的关系[^1] - 示例代码框架: ```python def searchInsert(nums, target): left, right = 0, len(nums)-1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid elif nums[mid] < target: left = mid + 1 else: right = mid - 1 return left # 关键点 ``` 2. **双指针技巧** - 三数之和类问:通过排序+双指针将时间复杂度从$O(n^3)$降为$O(n^2)$ - 快慢指针应用:链表环检测(Floyd算法) 3. **动态规划** - 背包问变形:使用二维状态数组处理子集和问 - 状态转移方程构建:如最长递增子序列的$dp[i] = max(dp[i], dp[j]+1)$结构 ## 二、优质资源推荐 1. 型分类详解(含Python/Java实现): - [LeetCode100型分类汇总](https://juejin.cn/post/7140176848285073438) [^2] - 包含动态规划、回溯算法等12类型的代码模板 2. 高频目精讲: - 第5(最长回文子串)的中心扩展法实现 - 第15(三数之和)的去重技巧 - 第21(合并两个有序链表)的递归写法 3. 刷路径建议: ```mermaid graph TD A[掌握基础数据结构] --> B[学习算法模板] B --> C{按类型专项训练} C --> D[数组/字符串] C --> E[链表操作] C --> F[树形结构] ``` ## 三、典型目解析示例 ### 例:62. 不同路径 **动态规划解法**: - 状态定义:$dp[i][j]$表示到达$(i,j)$的路径数 - 转移方程:$$dp[i][j] = dp[i-1][j] + dp[i][j-1]$$ - 空间优化:可将二维数组压缩为一维数组,时间复杂度保持$O(mn)$ ```python def uniquePaths(m, n): dp = [1] * n for _ in range(1, m): for j in range(1, n): dp[j] += dp[j-1] return dp[-1] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值