只是用下编辑器,,比较原理

The two statements below correspond to the comparison principle for elliptic and parabolic equations with Dirichlet boundary conditions. The main difference with the local case, is that for nonlocal equations the Dirichlet condition has to be taken in the whole complement of the domain Ω \Omega Ω instead of only the boundary.

Other boundary conditions require appropriate modifications.

Elliptic case
We say that an elliptic equation I u = 0 Iu=0 Iu=0 satiesfies the comparison principle if the following statement is true.

Given two functions u : R n → R u : \R^n \to \R u:RnR and v : R n → R v : \R^n \to \R v:RnR such that u u u and v v v are upper and lower semicontinuous in Ω ‾ \overline \Omega Ω respectively, where Ω \Omega Ω is an open domain, I u ≥ 0 Iu \geq 0 Iu0 and I v ≤ 0 Iv \leq 0 Iv0 in the viscosity sense in Ω \Omega Ω, and u ≤ v u \leq v uv in R n ∖ Ω \R^n \setminus \Omega RnΩ, then u ≤ v u \leq v uv in Ω \Omega Ω as well.

Parabolic case
We say that a parabolic equation u t − I u = 0 u_t - Iu=0 utIu=0 satiesfies the comparison principle if the following statement is true.

Given two functions u : [ 0 , T ] × R n → R u : [0,T] \times \R^n \to \R u:[0,T]×RnR and v : [ 0 , T ] × R n → R v : [0,T] \times\R^n \to \R v:[0,T]×RnR such that u u u and v v v are upper and lower semicontinuous in [ 0 , T ] × Ω ‾ [0,T] \times \overline \Omega [0,T]×Ω respectively, I u ≤ 0 Iu \leq 0 Iu0 and I v ≥ 0 Iv \geq 0 Iv0 in the viscosity sense in ( 0 , T ] × Ω (0,T] \times \Omega (0,T]×Ω, and u ≤ v u \leq v uv in ( { 0 } × R n ) ∪ ( [ 0 , T ] × ( R n ∖ Ω ) ) (\{0\} \times \R^n) \cup ([0,T] \times (\R^n \setminus \Omega)) ({0}×Rn)([0,T]×(RnΩ)), then u ≤ v u \leq v uv in [ 0 , T ] × Ω [0,T] \times \Omega [0,T]×Ω as well.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值