机器学习实战Ch02-k邻近算法-【回归】手写数字识别

本文介绍了如何使用K最近邻(KNN)算法进行手写数字识别。通过`img2vector`函数将图像转换为1024维向量,然后利用`classify0`实现KNN算法。在`handwritingClassTest`中测试了整个流程,展示了机器学习在图像识别领域的应用。
摘要由CSDN通过智能技术生成

分部代码

将图像转化为向量 img2vector(filename)

将32×32的图像以1×1024的向量输出

:param filename: 输入文件名
:return: 向量形式的数组,每行1024列
def img2vector(filename):
    returnVect = zeros((1, 1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0, 32 * i + j] = int(lineStr[j])
    return returnVect

kNN算法程序 classify0(inX, dataSet, labels, k)

见《约会数据分类》

测试算法 handwritingClassTest()

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')
    m = len(trainingFileList)
    trainingMat = zeros((m, 1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        file
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值