机器学习(一) K-近邻算法(KNN)

本文介绍了机器学习中的K-近邻算法(KNN),包括算法概述、优缺点、适用数据类型以及具体应用。通过电影分类和约会网站配对的例子,展示了KNN的工作原理和实际操作。最后,还提到了KNN在手写数字识别中的应用,并指出该算法虽然精度高,但计算复杂度和空间复杂度较高。
摘要由CSDN通过智能技术生成

机器学习(一):

K-近邻算法(KNN)概述

K-近邻算法采用测量不同特征值之间的距离方法进行分类。

优点:精度高、对异常值不灵敏、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型

其工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签 (lable),即我们知道样本集中每一位数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

K-近邻算法的一般流程:
(1)收集数据:可以使用任何方法。即获取样本。
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3)分析数据:可以使用任何方法。
(4)训练算法:此步骤不适用于k-近邻算法。即k-近邻算法不需要训练
(5)测试算法:计算错误率。
(6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

K-近邻算法的具体应用

下面有一个例子:

使用k-近邻算法去分类爱情片和动作片。图1-1显示了6部电影的打斗和接吻镜头数。那么我们要如何去区分这部新电影是爱情片还是动作片呢?我们可以尝试用k-近邻算法来解决这个问题。

图1-1 使用打斗和接吻镜头数分类电影

具体接吻和打斗镜头数参见表1-1:

表1-1 每部电影的接吻和打斗镜头数以及电影的评估类型
在这里插入图片描述
即使不知道未知的电影属于哪种类型,我们也可以通过某种方法计算出来。首先计算未知电影与样本集中其他电影的距离,如表1-2所示。(PS:Python实现电影分类应用时,会提供具体的算法)

表1-2 已知电影与未知电影的距离
在这里插入图片描述
现在我们已经得到了样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到k个距离最近的电影(k一般不大于20)。假定k=3,则三个最靠近的电影依次为He’s Not Really into Dudes、Beautiful Woman和California Man。按照k-近邻算法,这三部电影都是爱情片,因此我们可以判定未知电影的类型是爱情片。

K-近邻算法的具体代码

 def classify0(inX, dataSet, labels, k):  
        dataSetSize = dataSet.shape[0]  
        diffMat = tile(inX, (dataSetSize,1)) - dataSet  
        sqDiffMat = diffMat**2  
		sqDistances = sqDiffMat.sum(axis=1)  
  	    distances = sqDistances**0.5    
		sortedDistIndicies = distances.argsort()    
    	classCount={
   }        
		for i in range(k):    
			 voteIlabel = labels[sortedDistIndicies[i]]    
			 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1  
        sortedClassCount = sorted(classCount.iteritems(), 
         key=operator.itemgetter(1), reverse=True)   
        return sortedClassCount[0][0]

classify0()函数有四个输入参数:用于分类的输入向量是inX,输入的训练样本级为dataSet,标签向量为lables,最后的参数k表示用于选择最近邻居的数目,其中标签向量的元素数目和矩阵dataSet的行数相同。

使用K-邻近算法改进约会网站的配对效果

这里有一个例子:一位名叫海伦的,想在约会网站寻找适合自己的约会对象。尽管约会网站一直在推荐不同的约会人选,但是海伦并不是很对这些人感兴趣。经过一番总结,发现她曾经交往过三种人:
第一种是不喜欢的人,第二种是魅力一般的人,第三种是极具魅力的人。
尽管有以上的数据,但是海伦依然无法将约会网站推荐的匹配对象归入恰当的分类。她觉得可以在周一到周五约会那些魅力一般的人,而周末则更喜欢和那些极具魅力的人为伴。那么问题来了:我们要如何更好地帮助她找到自己喜欢的类型呢?

以下是在约会网站上使用本算法的过程:
(1)收集数据:提供文本文件。
(2)准备数据:使用Python解析文本文件。
(3)分析数据:使用Matplotlib画二维扩散图。
(4)训练算法:k-近邻算法不需要训练。以下例子直接省略。
(5)测试算法:使用海伦提供的部分数据作为测试样本。
测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类和实际类别不同,则标记为一个错误。
(6)使用算法:产生简单的命令行程序,然后海伦可以输入一些特征以判断对方是否为自己喜欢的类型。
海伦的样本主要包含以下三种特征:
(1)每年获得的飞行常客里程数
(2)玩视频游戏所耗时间百分比
(3)每周消费的冰淇淋公升数

以下为具体的代码实现:

from numpy import *
import operator
# k-近邻算法
from pip._vendor.distlib.compat import raw_input


def classify0(inX, dataSet, labels, k):  # 输入向量,训练数据,标签,参数k
    dataSetSize = dataSet.shape[0]  # 数据个数
    diffMat 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值