zjhu1030铺砖块(状压dp)

本文介绍了一个使用C++编程解决的动态规划问题,通过位运算技巧优化了空间复杂度。代码中展示了如何处理两个数的异或操作,并利用滚动数组降低空间需求。核心算法涉及动态规划状态转移和位操作的高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7,maxs=(1<<17)+5;//17^2<300
ll dp[maxs<<1],*pre,*cur;//dp开两倍maxs好让dp分成前后两部分。让pre,cur来回指
int main(){
	int t,S,n,m;
	cin>>t;
	while(t--){
		scanf("%d%d",&n,&m);
		if(m>17) m^=n,n^=m,m^=n;//通过异或交换
		//始终让m为小的,不超过maxs的 
		if((n&1)&&(m&1)){
			printf("0\n");continue;
		} 
		S=(1<<m)-1;
		pre=dp,cur=dp+maxs;//滚动数组。+maxs就是指后面一半 
		memset(dp,0,sizeof(dp));
		pre[0]=1;//
		for(int i=0;i<n;i++)
			for(int j=0;j<m;j++){
				//每一个s用完立即清除pre(所以是s++),而不是留着mems 
				for(int s=0;s<=S;pre[s++]=0){
					if(pre[s]==0) continue;
                    //上一次,这个未出现就不考虑。类似背包的上一趟这个位置为-1吧
					if(s&(1<<j)){//向上铺 
						cur[s&~(1<<j)]=(cur[s&~(1<<j)]+pre[s])%mod;
						continue;//如果往上了,可能不可能不铺!!
					} 
                    
					cur[s|(1<<j)]=(cur[s|(1<<j)]+pre[s])%mod;//不铺 
					if(s&(1<<j-1)&&j>0)//向左铺 。下面有j-1,所以j>0
						cur[s&~(3<<j-1)]=(cur[s&~(3<<j-1)]+pre[s])%mod;
						//3=1+2 往左铺有两格所以权为1和权为2的都要移。左即j-1 
				}
				swap(pre,cur); //变的是指针。滚动数组的精髓吧
			}	
		printf("%d\n",pre[0]);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值