随机过程
文章平均质量分 74
随机过程期末复习
欢喜h~
这个作者很懒,什么都没留下…
展开
-
随机过程复习(六)布朗运动
随机过程满足以下条件时,称为布朗运动过程:(1)X(0)=0;(2)是独立平稳增量过程;(3)对于固定时间的是均值为0, 方差为的正态随机变量。布朗运动过程简称布朗运动,也称维纳过程。可以得到布朗运动的分布函数为当时,称为标准布朗运动。任意布朗运动X(t)都可以通过令而转化为标准布朗运动。原创 2023-12-01 15:26:59 · 4097 阅读 · 0 评论 -
随机过程复习(五)鞅
由定义可知,T是一个取值非负整数的随机变量,可以用以描述过程的终止时间。由上述定理可知,一个下鞅总可分解为一个鞅和一个增过程之和。设取值为非负整数(包括+∞)的随机变量T,即随机序列。不能直接观察,而只能观察另一过程。,事件{T=n}的示性函数。在任何时刻的期望均相等。且上述分解是唯一的。且上述分解是唯一的。的函数,则称T是关于。原创 2023-12-01 14:52:46 · 782 阅读 · 0 评论 -
随机过程复习(四)连续时间马尔可夫过程
设状态空间为一随机过程,(1)若对于和,当时,都有下式成立:则称为连续时间马尔可夫过程(或连续参数马尔可夫链(2)若对于任意和,都有则称X为齐次马尔可夫链,并称为转移概率矩阵。转移概率矩阵P(t)具有下列基本性质:(1)P(t)为随机矩阵,即(2)C-K方程,即或(3)标准性与原点连续性其中I为单位矩阵。写成分量形式,即。原创 2023-12-01 14:22:35 · 2238 阅读 · 0 评论 -
随机过程复习(三)离散时间马尔可夫过程
如果随机序列对任意及,有则称其为马尔可夫链。,称为n时刻的一步转移概率。若对,即一步转移概率与当前时刻n无关,则称为齐次马尔可夫链。记,称P为的一步转移概率矩阵,简称转移矩阵。原创 2023-11-30 21:15:28 · 569 阅读 · 0 评论 -
随机过程复习(二)泊松过程
计数过程称为具有速率N(0)=0;过程是独立增量过程,即任取相互独立;在长度为t的任意时间区间中的事件个数服从均值为的泊松分布。即对于所有的,有计数过程称为具有速率是一个计数过程,且N(0)=0;是独立增量过程;具有增量平稳性,即对于,有;具有增量普通性,即对和充分小的,有其中,为的高阶无穷小。原创 2023-11-30 19:55:59 · 2376 阅读 · 0 评论 -
随机过程复习(一)概率论基础与随机过程概述
随机现象:在一定条件下,可能出现也可能不会出现的现象。随机试验:(1)试验可在相同条件下重复进行;(2)每次试验只有一个结果出现并且结果不可预知;(3)每次试验所有可能出现的结果已知。所有试验的可能结果组成的集合称为样本空间,记成中的元素称为样本点的子集A称为随机事件或简称事件称定义在样本空间样本空间是有限集;每个样本的出现是等可能的。设为可测空间,P是定义在(非负性)(归一性)若且,有(可列可加性)称P为可测空间上的概率测度,简称概率。称为概率空间,称。原创 2023-11-30 19:13:25 · 647 阅读 · 0 评论