随机过程复习(五)鞅

1. 基本概念

        对\forall n\geq 0,如果

(1)E|X_n|<\infty

(2)E(X_{n+1}|X_0,X_1,\cdots,X_n)=X_n

则称过程\{X_n,n\geq 0\}是鞅。

        在某些情况下,\{X_n,n\geq 0\}不能直接观察,而只能观察另一过程\{Y_n,n\geq 0\},因此将鞅的定义推广如下:

        设有两个过程\{X_n,n\geq 0\}\{Y_n,n\geq 0\},如果

(1)E|X_n|<\infty

(2)E(X_{n+1}|Y_0,Y_1,\cdots,Y_n)=X_n

则称\{X_n,n\geq 0\}关于\{Y_n,n\geq 0\}是鞅。

        假设\{X_n,n\geq 0\}关于\{Y_n,n\geq 0\}是鞅,则有如下结论:

(1)E(X_{n}|Y_0,Y_1,\cdots,Y_n)=X_n

(2)E(X_{n+1})=E[E(X_{n+1}|Y_0,Y_1,\cdots,Y_n)]=E(X_n)=E(X_0),这说明鞅\{X_n,n\geq 0\}在任何时刻的期望均相等。

(3)E(X_{n+k}|Y_0,Y_1,\cdots,Y_n)=X_n,\forall k\geqslant0

(4)如果\{X_n,n\geq 0\}\{Z_n,n\geq 0\}关于\{Y_n,n\geq 0\}是鞅,则\{X_n\pm Z_n,n\geq 0\}关于\{Y_n,n\geq 0\}是鞅。

(5)如果\{X_n,n\geq 0\}关于\{Y_n,n\geq 0\}是鞅,g(Y_0,Y_1,\cdots,Y_n)是关于Y_0,Y_1,\cdots,Y_n的有界函数,则:

E(g(Y_0,Y_1,\cdots,Y_n)X_{n+k}|Y_0,Y_1,\cdots,Y_n)=g(Y_0,Y_1,\cdots,Y_n)X_n

2. 上(下)鞅及分解定理

        \{X_n,n\geq 0\}\{Y_n,n\geq 0\}是随机过程,如果满足下列条件:

(1)E(X^-)>-\infty,X^-=\min(X,0)

(2)E(X_{n+1}|Y_0,Y_1,\cdots,Y_n)\leqslant X_n

(3)X_nY_0,Y_1,\cdots,Y_n的函数

则称\{X_n,n\geq 0\}关于\{Y_n,n\geq 0\}是一个上鞅

        

        \{X_n,n\geq 0\}\{Y_n,n\geq 0\}是随机过程,如果满足下列条件:

(1)E(X^+)<-\infty,X^+=\max(X,0)

(2)E(X_{n+1}|Y_0,Y_1,\cdots,Y_n)\geq X_n

(3)X_nY_0,Y_1,\cdots,Y_n的函数

则称\{X_n,n\geq 0\}关于\{Y_n,n\geq 0\}是一个下鞅

        鞅分解定理

        对于任意一个\{X_n,n\geq 1\}关于\{Y_n,n\geq 1\}的下鞅,必存在过程\{M_n,n\geq 1\}\{Z_n,n\geq 1\},使得:

(1)\{M_n,n\geq 1\}关于\{Y_n,n\geq 1\}是鞅;

(2)Z_nY_1,\cdots,Y_{n-1}的函数(n\geq 2),且Z_1=0,Z_n\leq Z_{n+1},E(Z_n)<+\infty

(3)X_n=M_n+Z_n(n\geq 1)

且上述分解是唯一的。

        由上述定理可知,一个下鞅总可分解为一个鞅和一个增过程之和。

        对于任意一个\{X_n,n\geq 1\}关于\{Y_n,n\geq 1\}的上鞅,必存在过程\{M_n,n\geq 1\}\{Z_n,n\geq 1\},使得:

(1)\{M_n,n\geq 1\}关于\{Y_n,n\geq 1\}是鞅;

(2)Z_nY_1,\cdots,Y_{n-1}的函数(n\geq 2),且Z_1=0,Z_n\leq Z_{n+1},E(Z_n)<+\infty

(3)X_n=M_n-Z_n(n\geq 1)

且上述分解是唯一的。

3. 停时和停时定理

        设取值为非负整数(包括+∞)的随机变量T,即随机序列 \{Y_n,n\geq 0\}  ,若对n\geq 0,事件{T=n}的示性函数I_{\{T=n\}}仅是Y_1,\cdots,Y_{n-1}的函数,则称T是关于\{Y_n,n\geq 0\}停时

        若T是关于\{Y_n,n\geq 0\}的停时,那么,定义

\left.\bar{Y}_n=\left\{\begin{array}{cc}Y_n,&n<T\\Y_T,&n\geqslant T\end{array}\right.\right.

则,\{\bar{Y}_n,n\geq 1\}称为停止过程。可以证明E\{\bar{Y}_n\}=E\{Y_0\}

        由定义可知,T是一个取值非负整数的随机变量,可以用以描述过程的终止时间。

4. 鞅收敛定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值