1. 概率的公理化定义
1.1 概念
- 随机现象:在一定条件下,可能出现也可能不会出现的现象。
- 随机试验:
(1)试验可在相同条件下重复进行;
(2)每次试验只有一个结果出现并且结果不可预知;
(3)每次试验所有可能出现的结果已知。
- 所有试验的可能结果组成的集合称为样本空间,记成. 中的元素称为样本点. 的子集A称为随机事件或简称事件.
1.2 随机事件的关系运算
1.3 概率的直观定义
1.3.1 古典概型
称定义在样本空间上的概型为古典概型,如果:
- 样本空间是有限集;
- 每个样本的出现是等可能的。
1.3.2 几何概型
称定义在样本空间上的概型为几何概型,如果:
- 样本空间是无限集;
- 每个样本的出现时等可能的。
1.3.3 概率定义
设为可测空间,P是定义在上的实值函数,若满足:
- (非负性)
- (归一性)
- 若且,有
(可列可加性)
称P为可测空间上的概率测度,简称概率。称为概率空间,称为事件域。若,称A为随机事件或时间,称P(A)为事件的概率。
概率的性质
- 若,则
- 若互不相容,则(有限可加性)
- 对任意两个时间A及B,有
5.(若当(Jordan)公式),对任意,有
1.4 条件概率
设为一概率空间,,且P(B)>0,则称
为在事件B发生的条件下,事件A发生的条件概率。
几个重要的公式:
- 乘法公式
若,且则
- 全概率公式
若,,且两两互不相容,,则
- 贝叶斯公式
若,,且两两互补相容,,则
2. 随机变量与数字特征
2.1 随机变量的定义
设为一概率空间。是定义在上的单值实函数。若对任意实数X,总有,则称是上的随机变量,简记为随机变量X。称
为随机变量X的分布函数。
2.2 示性函数
2.3 分布函数的性质
- F(x)是单调不减的,即当时,有
- F(x)是右连续的,即
离散型随机变量和连续性随机变量
若随机变量X的可能取值的全体是一有限集或可数集,则称X是离散型随机变量。
其概率分布用如下分布律描述:
其分布函数为
连续性随机变量X的概率分布常用概率密度f(x)描述,其分布函数为
显然,对连续型随机变量,.
2.4 几种常见分布
(1)退化分布
若随机变量X只取常数c,即,则X并不随机,但把它看做随机变量的退化情况更为方便,此时称为退化分布,又称单点分布。
(2)伯努利分布
在一次试验中,设事件A出现的概率为p,不出现的概率为1-p,若以X记事件A出现的次数,则X的取值仅为0,1,其对应的概率为
这个分布称为伯努利分布,又称为两点分布。
(3)二项分布
在n重伯努利试验中,设事件A在每次试验中出现的概率均为p,以X记在n次试验中事件A出现的次数,则X的可能取值为0,1,...,n,其对应的概率为
称为以n和p为参数的二项分布,简记为X~B(n,p)。
(4)泊松分布
若随机变量X可取一切非负整数值,并且
称X服从泊松分布,记为X~P()
(5)几何分布
在伯努利试验序列中,设事件A在每次试验中出现的概率均为p,以X记事件A首次出现的实验次数,则X的可能取值为1,2,...,其对应的概率为
称为几何分布。
(6)帕斯卡分布
在伯努利试验序列中,设事件A在每次实验中出现的概率均为p,以X记时间A第r次出现的试验次数,则X的可能取值为r,r+1,...,其对应的概率为
称为帕斯卡分布。
(7)离散均匀分布
如果分布律为
则称为离散均匀分布。
(8)连续均匀分布
如果X的密度函数为
则称X为区间[a,b]上的均匀分布。
(9)正态分布
如果密度函数为
则称为参数为的正态分布,也称为高斯分布,记为
(10)指数分布
如果密度函数为
则称为指数分布。
2.5 数字特征
(1)数学期望
离散型随机变量:
连续型随机变量:
一般形式:
(2)方差:
(3)协方差:
(4)相关系数:
(5)k阶矩:
2.6 几个重要的不等式
(1)施瓦兹不等式:若随机变量X,Y的二阶矩存在,则
特别地,有
(2)切比雪夫不等式:对于任一随机变量X,若EX与DX均存在,则对于任意,恒有
或
(3)詹森不等式:若g(`)是R上一个凸函数,即和,有
则
(4)马尔可夫不等式:设X是样本空间上的非负随机变量且有有限期望,则对于,有
3. 条件数学期望
3.1 离散型随机变量的条件数学期望
设X,Y为两个离散型随机变量,其联合分布律为,若,称
为给定时,X的条件分布律。
称
为给定时,X的条件数学期望。
显然,的值是依赖于。
X关于Y的条件数学期望E(X|Y)定义为
其中
上式称为E(X|Y)的示性函数表达式。
由于随机变量E(X|Y)是随机变量Y的函数,故它的数学期望为:
3.2 连续型随机变量的条件数学期望
设X,Y均为连续型随机变量,(X,Y)的联合概率密度函数为f(x,y),Y的概率密度函数为。设,给定Y=y,X的条件概率密度函数为
条件分布函数为
条件数学期望为
EX=E{E(X|Y)}可看作数学期望形式的全概率公式。
求条件数学期望的一般步骤:
- 先写出固定条件(如)情况下X的条件分布律或条件密度函数;
- 根据条件数学期望的定义,通过求和或积分得到给定条件下的数学期望;
- 若Y为连续型随机变量,则将y替换为随机变量Y即可。
4. 随机过程的基本概念
设对每一个参数,是一个随机变量,称随机变量族为随机过程。其中,是一个实数集,称为指标集。
- 从数学观点来看,随机过程是定义在上的二元函数。
- 当t固定时,是定义在样本空间上的函数,即为一随机变量。
- 固定时,是定义在T上的普通函数,称为随机过程的样本函数或轨道。
- 当t,都固定是,就是一个数值,称为随机过程的一个状态。
- 可能取值的全体所构成的集合称为状态空间,记作S,S中的元素称为状态。
5. 随机过程有限维分布与数字特征
一般来说,对任意给定的是一个n维随机向量,称其联合分布函数
为随机过程的n维分布函数,简称n维分布。
设是概率空间上的随机过程,对任意,称随机变量X(t)的分布函数为随机过程的一维分布函数,简称一维分布。称X(t)的期望E[X(t)]为随机过程的均值函数,记为;称X(t)的方差var[X(t)]为随机过程的方差函数,记为;称方差函数的开方为随机过程的标准差函数,记为。
设是某概率空间上的随机过程,对任意两个不同的,称上式所定义的为随机过程在两个不同时刻的联合二维分布,简称二维分布。称为随机过程的自相关函数,简称相关函数,记为.称
为随机过程的协方差函数,记为.
6. 随机过程的分类
(1)正态过程
设是随机过程,若对任意正整数n和,是n维正态随机变量,则称是正态过程或高斯过程。
(2)维纳过程
随机过程{W(t), t≥0}为维纳过程,若它满足以下三个性质:
- 每一个增量W(t+s)-W(s)都为正态分布,且均值为,方差为;
- 对任意的,增量独立并服从正态分布;
- W(0)=0并且W(t)的轨道连续。
(3)平稳过程
设为随机过程,若对任意正整数n,任意h>0,当时,均有随机向量与有相同的联合分布,记为
则称为严平稳过程。
若随机过程的二阶矩存在,且对任意(常数),对任意,则称为宽平稳过程或协方差平稳过程。
(4)独立增量过程
设为随机过程,若对任意大于等于3的正整数n,任意,,随机变量相互独立,则称为独立增量过程。若对任意和任意h>0,,均有
则称为平稳增量过程。
(5)计数过程
计数过程又称为点过程,设有一随机过程,若N(A)表示集合A中“事件”发生的次数,即它满足:
- 对是一取值非负整数的随机变量'
- 对,若,对每一个样本有,则称为计数过程。
(6)泊松过程
对任意t≥0,若N(t)表示时间段[0,t]内事件A发生的次数,且满足如下三个条件:
- N(0)=0;
- {N(t), t≥0}为独立增量过程;
- 对任意的t≥0,s≥0,N(s+t)-N(s)服从参数为的泊松分布,则称{N(t), t≥0}是强度为的泊松过程。
(7)马尔可夫过程
设为随机过程,其状态空间为S。若对任意正整数n及,,任意,其条件分布满足:
则称为马尔可夫过程。
(8)鞅
若对,且对,有
则称为鞅。