对比学习概念与如何标注标签

对比学习公式讲述

对比学习倾向于将同一图像的转换视图之间的一致性最大化,而将不同图像的转换视图之间的一致性最小化。令f_\phi(\cdot)是一个输出特征空间R^d的卷积神经网络。一个图像x的两个增广图像补丁通过
f_\phi(\cdot)进行映射,生成一个查询特征q和一个关键特征k。此外,使用其他图像的补丁生成一个包含数千个负特征\{v_n\}^Q_{n=1}的队列。

该队列既可以使用当前批处理中的所有图像在线生成[1],也可以使用最近几个epoch的存储特征离线生成[4]。给定q,对比学习的目标是识别数千个特征\{v_n\}_{n=1}^Q中的k,可以表示为:L(\textbf q,\textbf k,\{v_n\})=-log\frac{e^{sim(\textbf q,\textbf k)/\tau}}{e^{sim(\textbf q,\textbf k)/\tau}+\sum^Q_{j=1}e^{sim(\textbf q,v_j)/\tau}}

式中\tau为温度参数,sim(\cdot,\cdot)相似性度量。在Exemplar[5]中,为了“在弱利用标签信息的同时保留每个正实例的唯一信息”,将\{v_n\}_{n=1}^Q中与属于同一类\textbf q的所有样本都剔除。

什么是对比学习(无监督任务)

对比学习往往解决第一件事:在原始任务如何把特征提取的更好,encoder编码器,我们该如何设计。

有了标签,模型就会安装这个标签(一遍是人给的)为上限进行学习,但如果没有标签了,就相当于不设定上限了(但是有监督任务效果确实往往比无监督好,无简单经常出现不收敛的情况)

如何标注标签

SimCLR Framework

数据增强得越大(me:原始数据被干扰得越厉害),模型,即encoder的泛化能力越强(me:能够面对各种被损坏的数据也能识别出哪种类别)

下面的直方图的y轴指准确率

SimCSE Framework

对比学习的关键就是如何选择正样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十有久诚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值