hnust 1815: 算法10-6~10-8:快速排序

hnust 1815: 算法10-6~10-8:快速排序

题目描述
快速排序是对起泡排序的一种改进。它的基本思想是,通过一趟排序将待排序的记录分割成两个独立的部分,其中一部分记录的关键字均比另一部分的关键字小,在分成两个部分之后则可以分别对这两个部分继续进行排序,从而使整个序列有序。
快速排序的算法可以描述如下:
在这里插入图片描述

在本题中,读入一串整数,将其使用以上描述的快速排序的方法从小到大排序,并输出。

输入
输入的第一行包含1个正整数n,表示共有n个整数需要参与排序。其中n不超过100000。
第二行包含n个用空格隔开的正整数,表示n个需要排序的整数。
输出
只有1行,包含n个整数,表示从小到大排序完毕的所有整数。
请在每个整数后输出一个空格,并请注意行尾输出换行。
样例输入 Copy
10
2 8 4 6 1 10 7 3 5 9
样例输出 Copy
1 2 3 4 5 6 7 8 9 10
提示
在本题中,需要按照题目描述中的算法完成快速排序的算法。
快速排序是一种十分常用的排序算法,其平均时间复杂度为O(knlnn),其中n为待排序序列中记录的个数,k为常数。大量的实际应用证明,在所有同数量级的此类排序算法中,快速排序的常数因子k是最小的,因此,就平均时间而言,快速排序是目前被认为最好的一种内部排序方法。
而在C语言的常用编译器中,qsort函数是一个非常常用的快速排序函数。

解题过程

快速排序是一种高效的排序算法,使用分治法(Divide and Conquer)策略来把一个序列分为较小的两个子序列,然后递归地排序两个子序列。

题干代码解析
图片中提供的代码是快速排序算法(Quick Sort)的实现,它由两个主要部分组成:分区函数 Partition 和快速排序函数 QSort。以下是对代码的详细解析:

Partition 函数:

  • 函数作用:对顺序表的一个子序列进行分区操作,使枢轴元素(pivot)最终位于它最终排序的位置,并使所有比它小的元素位于它左边,所有比它大的元素位于它右边。
  • 参数:
    • SqList &L:引用传递的顺序表。
    • int low:子序列的起始索引。
    • int high:子序列的结束索引。
  • 过程:
    • 选择 L.r[low] 作为枢轴记录 pivotkey
    • 使用两个指针 lowhigh,从两端交替向中间扫描,直到 lowhigh 相遇。
    • L.r[high].key 小于或等于 pivotkey 时,将 high 指针向左移动。
    • L.r[low].key 大于 pivotkey 时,将 low 指针向右移动,并交换 L.r[low]L.r[high]
    • lowhigh 相遇时,将枢轴记录移动到它最终的位置 L.r[low]
    • 返回枢轴记录的位置。

QSort 函数:

  • 函数作用:递归地对顺序表的子序列进行快速排序。
  • 参数:
    • SqList &L:引用传递的顺序表。
    • int low:子序列的起始索引。
    • int high:子序列的结束索引。
  • 过程:
    • 如果 low 小于 high,说明子序列长度大于1,需要排序。
    • 调用 Partition 函数对子序列进行分区,得到枢轴位置 pivotloc
    • 对枢轴左边的子序列 L.r[low...pivotloc-1] 递归调用 QSort 进行排序。
    • 对枢轴右边的子序列 L.r[pivotloc+1...high] 递归调用 QSort 进行排序。

QuickSort 函数:

  • 函数作用:快速排序算法的入口函数,对整个顺序表进行排序。
  • 参数:
    • SqList &L:引用传递的顺序表。
  • 过程:
    • 调用 QSort 函数,传入顺序表 L,以及起始索引1和结束索引 L.length

代码逻辑分析:

  • 快速排序是一种分治算法,它通过递归地将数据分为较小的子问题来解决。
  • 算法的关键在于分区操作,它通过选取一个枢轴元素,将数据分为两部分,使得左边的所有元素都不大于枢轴,右边的所有元素都不小于枢轴。
  • 通过递归地对子序列进行快速排序,最终达到整个序列有序的目的。

注意事项:

  • 快速排序的性能在最坏情况下是 O(n^2),但平均情况下是 O(n log n),这取决于枢轴的选择。
  • 快速排序是不稳定的排序算法,因为相同元素的顺序可能会在分区过程中改变。
  • 快速排序通常需要随机化处理来避免最坏情况的发生,特别是在输入数据已经有序或接近有序的情况下。



以下是对小编的高中模板递归方法快速排序的详细讲解

  1. 函数定义

    • quick_sort(int q[], int l, int r):这是快速排序的递归函数,接收一个整数数组 q 和两个整数 lr 作为参数,分别表示要排序的数组部分的起始和结束索引。
  2. 基本情况

    • 如果 l 大于等于 r,则表示当前要排序的数组部分已经是一个元素或为空,不需要排序,直接返回。
  3. 选择基准元素

    • 使用 (l + r >> 1) 计算中间位置的索引,并将该位置的元素 q[l + r >> 1] 作为基准元素 x。这里使用了位运算符 >> 1 来实现整数除以2。
  4. 初始化指针

    • i 初始化为 l - 1j 初始化为 r + 1,这两个指针用于从数组的两端开始遍历。
  5. 分区操作

    • 使用两个 while 循环进行分区:
      • 第一个 while 循环中,i 从左向右遍历,直到找到第一个不小于 x 的元素。
      • 第二个 while 循环中,j 从右向左遍历,直到找到第一个不大于 x 的元素。
    • i 小于 j 时,使用 swap 函数交换 q[i]q[j],将较大的元素移动到数组右侧,较小的元素移动到左侧。
  6. 递归排序

    • 当完成一次分区操作后,对基准元素左边和右边的子数组分别进行快速排序。
  7. 函数调用

    • quick_sort(q, l, j) 对左侧子数组进行排序。
    • quick_sort(q, j + 1, r) 对右侧子数组进行排序。
  8. swap 函数

    • 代码中没有给出 swap 函数的实现,但它应该是一个交换两个整数的函数。
  9. 算法性能

    • 快速排序的平均时间复杂度为 O(n log n),在大多数情况下表现良好。但在最坏情况下(例如,数组已经排序或所有元素相等),时间复杂度会退化为 O(n^2)。
  10. 稳定性

    • 快速排序是不稳定的排序算法,因为相同的元素可能在分区过程中改变它们原来的顺序。

快速排序是一种非常实用的排序算法,由于其高效性,它在实际应用中非常广泛。然而,对于大型数据集或需要稳定性的场景,可能需要考虑其他排序算法,如归并排序。


AC代码

这里小编手懒了,就直接用了高中背过的算法模板,上面有讲解

#include <iostream>
using namespace std;
 
const int N = 1e6 + 10;
int n,q[N];
 
void quick_sort(int q[], int l, int r)
{
    if(l>=r) return;
     
    int x=q[l+r>>1], i=l-1, j=r+1;
     
    while(i<j)
    {
        do i++; while(q[i]<x);
        do j--; while(q[j]>x);
        if(i<j) swap(q[i],q[j]);
    }
     
    quick_sort(q,l,j), quick_sort(q,j+1,r);
}
 
int main()
{
    scanf("%d", &n);
    for(int i=0; i<n; i++)
        scanf("%d", &q[i]);
    quick_sort(q,0,n-1);
    for(int i=0; i<n; i++)
        printf("%d ", q[i]);
         
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值