模拟,二分,数学,双指针,前缀和

模拟

题目

  • 输入系数可能为0,这种情况直接排除
  • 次数一致的项合并,合并后可能产生系数为0的项,这种情况也要排除
  • 感觉这个用map略麻烦,题解用hash数组。以后想到用map时,可以优先考虑hash数组。
#include <cstdio>
#include <algorithm>
#include <map>

using namespace std;

int main() {
    int n;
    map<int, int, greater<int>> func;
    scanf("%d", &n);

    int a, b;
    for (int i = 0; i < n; i++) {
        scanf("%d %d", &a, &b);
        if (b >= 5 && a != 0) {
            for (int k = 0; k < 5; k++) {
                a *= b;
                b --;
            }
            if (!func.count(b)) {
                func[b] = a;
            } else {
                func[b] += a;
            }
        }
    }

    int size = func.size();
    if (size == 0) {
        printf("0 0");
        return 0;
    }

    int i = 0;
    for (map<int, int>::iterator it = func.begin(); it != func.end(); it++) {
        if (it -> second != 0) {
            printf("%d %d", it -> second, it -> first);
            if (i != size - 1) printf("\n");
        }
        i ++;
    }
}

数学

进制转换

  • 负三进制转换,需要了解的编程除余知识:
    n-被除数,r-除数
    当r<0,n>0时,商和余数都是非负数
    当r<0,n<0时,商是非负数,而余数在[r+1, 0]之间
    这道题要求余数不能为负数,所以对于负的余数+r使其变化到非负值,相对的,商加一。
#include <cstdio>
#include <vector>

using namespace std;
int main() {
    int n;
    vector<int> v;
    scanf("%d", &n);

    if (n == 0) {
        printf("0");
        return 0;
    }

    int mod = 0;
    while (n != 0) {
        mod = n % (-3);
        n = (n - mod) / (-3);
        if (mod < 0) {
            mod += 3;
            n ++;
        }
        v.push_back(mod);
        // printf("%d %d\n", mod, n);
    }

    for (int i = v.size() - 1; i >= 0; i--) {
        printf("%d", v[i]);
    }
}

二分法

  • 寻找第一个元素x的下标,没有就返回-1
  • 递增序列,则寻找从左到右,第一个满足x的元素下标
#include <cstdio>
#include <algorithm>
#define maxn 100000

using namespace std;
int n, x, a[maxn];

// 实现的是lower_bound:找出第一个大于等于x的元素下标
int binarySearch() {
    int l = 0, r = n; // 左闭右闭,搜查范围是[0, n],n为找不到的情况
    int mid = (l + r) / 2; 
    while (l < r) { // 夹出一个元素,l=r
        if (a[mid] < x) { // 当mid所指元素小于x,说明第一个大于等于x的元素应该在mid的右边
            l = mid + 1;
        } else { // 反之,第一个大于等于x的元素在mid的左边或者为mid
            r = mid;
        }

        mid = (l + r) / 2;
    }

    return l;
}

int main() {
    scanf("%d %d", &n, &x);

    for (int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
    }

    int idx = binarySearch();

    if (idx < n && a[idx] == x) printf("%d", idx);
    else printf("-1");
}
  • 寻找最后一个元素x的下标,没有就返回-1
#include <cstdio>
#define maxn 100000

using namespace std;
int n, x;
int a[maxn];

// 实现upper_bound
int BinarySearch () {
    int l = 0, r = n;
    int mid = (l + r) / 2;

    while (l < r) {
        if (a[mid] <= x) { // 第一个大于x的元素在mid的右边
            l = mid + 1;
        } else { // 在mid的左边
            r = mid;
        }

        mid = (l + r) / 2;
    }

    return l;
}

int main() {
    scanf("%d %d", &n, &x);

    for (int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
    }

    int idx = BinarySearch();

    if (idx > 0 && a[idx-1] == x) printf("%d", idx-1);
    else printf("-1");
    return 0;
}

旋转数组🥲

    int l = 0, r = n - 1, mid;
    while (l < r) {
        mid = (l + r) / 2;
        if (a[mid] > a[r]) {
            l = mid + 1;
        } else {
            r = mid;
        }
    }

求方程根

木棒切割

总结

如果l = m, r = m -1, mid = (r+m+1)/ 2 不然会死循环,干
如果l = m + 1, r = m, mid = (r+m)/ 2

双指针

归并排序

#include <cstdio>
#define maxn 1000

using namespace std;

void merge(int a[], int l1, int r1, int l2, int r2) {
    int idx1 = l1, idx2 = l2, idx = 0;
    int temp[maxn];
    while (idx1 <= r1 && idx2 <= r2) {
        if (a[idx1] < a[idx2]) {
            temp[idx++] = a[idx1++];
        } else {
            temp[idx++] = a[idx2++];
        }
    }

    while (idx1 <= r1) {
        temp[idx++] = a[idx1++];
    }

    while(idx2 <= r2) {
        temp[idx++] = a[idx2++];
    }

    for (int i = 0; i < idx; i++) {
        a[l1 + i] = temp[i];
    }
}

void mergesort(int a[], int left, int right) { // 用来划分的- -
    if (left < right) { // 当只剩一个元素时返回
        int mid = (left + right) / 2;
        mergesort(a, left, mid);
        mergesort(a, mid+1, right);
        merge(a, left, mid, mid + 1, right); 
    }
}

int main() {
    int n, a[maxn];
    scanf("%d", &n);

    for (int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
    }

    mergesort(a, 0, n-1);

    for (int i = 0; i < n; i++) {
        printf("%d", a[i]);
        if (i != n-1) printf(" ");
    }
}

前缀和

平衡数组

  • 累加累乘这些可能会溢出,前缀和尤为注意
  • 注意到a[i]的取值只有1,2,3,利用这一点简化
#include <cstdio>
#include <algorithm>
#define maxn 1000

using namespace std;
int main() {
    int n, a[maxn], lefttwo[maxn], leftthree[maxn], cnt2 = 0, cnt3 = 0;

    scanf("%d", &n);

    fill(lefttwo, lefttwo + n, 0);
    fill(leftthree, leftthree + n, 0);
    for (int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
        if (a[i] == 2) {
            cnt2 ++;
        } else if (a[i] == 3){
            cnt3 ++;
        }
        lefttwo[i] = cnt2;
        leftthree[i] = cnt3;
    }

    if (lefttwo[n-1] % 2 == 1 || leftthree[n-1] % 2 == 1) {
        printf("-1");
        return 0;
    }

    for (int i = 0; i < n; i++) {
        if (lefttwo[i]*2 == lefttwo[n-1] && leftthree[i]*2 == leftthree[n-1]) {
            printf("%d", i);
            break;
        }
    }

}

快速排序

#include <cstdio>
#define maxn 1000

using namespace std;
int Partition(int a[], int l, int r) {
    int temp = a[l]; // 主元
    while (l < r) {
        while (l < r && temp < a[r]) r--; // 右边的比主元大,反之扔左边
        a[l] = a[r];
        while (l < r && a[l] <= temp) l++; // 左边小于等于主元,反之扔右边
        a[r] = a[l];
    }

    a[l] = temp; // l==r,主元放置到了最终的位置上
    return l;
}

void quicksort(int a[], int l, int r) {
    if (l < r) { // 只有一个元素就不用排啦
        int pos = Partition(a, l, r); // 得到一个元素的位置
        quicksort(a, l, pos-1);
        quicksort(a, pos+1, r);
    }
}

int main() {
    int n, a[maxn];
    scanf("%d", &n);

    for (int i = 0; i < n; i++) {
        scanf("%d", &a[i]);
    }

    quicksort(a, 0, n-1);

    for (int i = 0; i < n; i++) {
        printf("%d", a[i]);
        if (i != n-1) printf(" ");
    }

}

数学

最大公约数

int gcd(int a, int b) {
	if (b == 0) return a;
	else return gcd(b, a%b);
}

最小公倍数

  • a,b的最小公倍数:ab/d,d是a,b的最大公约数
  • 为了防止溢出可以写成:a/d * b

素数

质因子分解

#include <cstdio>
#include <vector>
#include <utility>

using namespace std;
typedef pair<int, int> factor;

int main() {
    int n;
    vector<factor> v;
    scanf("%d", &n);

    for (int i = 2; i*i <= n; i++) { // 筛选[2, sqrt(n)]的质数
        int cnt = 0;
        while (n % i == 0) { // 包含了筛法,所以不用使用素数表
            cnt ++;
            n /= i;
        }
        if (cnt != 0) v.push_back(factor(i, cnt));
    }

    if (n != 1) { // n为质数的情形
        v.push_back(factor(n, 1));
    }

    for (int i = 0; i < v.size(); i++) {
        printf("%d %d", v[i].first, v[i].second);
        if (i != (int)v.size() - 1) printf("\n");
    }
}
  • 求n!的质因子:n!中有(n/p + n/p ^ 2 + n/p ^ 3 + …)个质因子p
  • n!的末尾有多少个零:末尾0的个数等于n!中因子10的个数,而10的个数等于n!中质因子5的个数。

组合数

#include <cstdio>
#include <cstring>
#define maxn 51
typedef long long LL;

using namespace std;
// c[i][j] = c[i-1][j] + c[i-1][j-1]:c[j/i] = c[j/i-1] + c[j-1/i-1]
// c[i][j] = c[i][n-j]:c[j/i] = c[i-j/i]
int main() {
    LL n, m;
    LL c[maxn][maxn];

    scanf("%lld %lld", &n, &m);

    // 初始化
    // c[0/i] = 1, c[i/i] = 1
    memset(c, 0, sizeof(c));
    for (LL i = 0; i <= n; i++) {
        c[i][0] = 1;
        c[i][i] = 1;
    }

    for (LL i = 2; i <= n; i++) {
        for (LL j = 0; j <= i/2; j++) {
            c[i][j] = c[i-1][j] + c[i-1][j-1];
            c[i][i-j] = c[i][j];
        }
    }

    printf("%lld", c[n][m]);
}
  • 组合数取模:c[m/n] % p
#include <cstdio>
#include <cstring>
#define maxn 501
typedef long long LL;

using namespace std;
// c[i][j] = c[i-1][j] + c[i-1][j-1]:c[j/i] = c[j/i-1] + c[j-1/i-1]
// c[i][j] = c[i][n-j]:c[j/i] = c[i-j/i]
int main() {
    LL n, m, p;
    LL c[maxn][maxn];

    scanf("%lld %lld %lld", &n, &m, &p);

    // 初始化
    // c[0/i] = 1, c[i/i] = 1
    memset(c, 0, sizeof(c));
    for (LL i = 0; i <= n; i++) {
        c[i][0] = 1;
        c[i][i] = 1;
    }

    for (LL i = 2; i <= n; i++) {
        for (LL j = 0; j <= i/2; j++) {
            c[i][j] = (c[i-1][j] + c[i-1][j-1]) % p; // 这里取模就好
            c[i][i-j] = c[i][j];
        }
    }

    printf("%lld", c[n][m]);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值