windows10下whisper的安装使用和CUDA的配置

buzz基于whisper的客户端,可以优先尝试,支持Mac, Windows和Linux

https://github.com/chidiwilliams/buzzicon-default.png?t=N2N8https://github.com/chidiwilliams/buzz

  •  whisper是OpenAI 发布的一个的神经网络,主要用于语音识别,一时兴起就想玩一玩,下面是它的github链接(安装时需要全局代理才比较快)

GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak SupervisionRobust Speech Recognition via Large-Scale Weak Supervision - GitHub - openai/whisper: Robust Speech Recognition via Large-Scale Weak Supervisionhttps://github.com/openai/whisper

 注:

pip install git+https://github.com/openai/whisper.git 

等价于下载压缩包后再

python setup.py install --user

官方给了个一键pip命令,优先使用这个命令:

pip install -U openai-whisper
  •  官方给出的所需配置prerequisite如下(我使用python3.8.9也行)

        python3.9.9

        pyTorch1.10.1

        ffmpeg

我本身装有ffmpeg,难点就在于CUDA的安装和pyTorch的安装,这两花了我两小时。

  • 首先是CUDA的安装,网上推荐的都是11.3,但我安装的是11.4,依旧能用

        安装详情请参考下面这篇文章,安装到CUDA即可,不用安装CUDNN,环境变量问题比较麻烦,耐心点就好了Win10安装CUDA_RunAtWorld的博客-CSDN博客_windows安装cuda目录安装Nvidia显卡驱动安装Tookit和CuDNN前言安装工具的准备CUDA 安装与配置过程cuDNN配置安装PyTorch卸载CUDA1.前言2.卸载开始参考安装Nvidia显卡驱动安装Nvidia显卡驱动前可以先检查Nvidia显卡驱动是否已安装。搜索 Nvidia控制面板 或 Nvidia Control Panel可以看到当前已经安装的显卡驱动及版本如需安装显卡驱动,在官方驱动下载网站找到自己的显卡型号对应的驱动下载并安装https://blog.csdn.net/RunAtWorld/article/details/124282176

  • pyTorch1.10.1的安装直接在命令行输入下面的命令即可
pip --trusted-host pypi.tuna.tsinghua.edu.cn install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html

whisper运行实际效果, 以向晚大魔王录播文件为例,用体积最小运行速度最快的tiny模式

whisper D:/1.mp4 --model tiny  --language Chinese

 可以看出识别效果还是挺不错的,但由于追求速度,某些音相近的会被识别错误,如

  • 团布->团播
  • 呼唤->互换
  • 出大了一->出道了
  • 养成血->养成系
  • 搭->的

可惜我的显卡带不动更大的模型了,以后有机会再尝试一下

### Whisper 本地安装教程 #### 环境准备 为了成功在本地环境中安装并运行 Whisper,需先确认操作系统及其版本。以下是针对不同操作系统的具体安装指南。 --- #### macOS (基于 M1 Pro, macOS 13.6) macOS 用户可以按照以下步骤完成 Whisper安装: 1. **Python 安装** - 推荐使用 Python 3.9 或更高版本。可以通过 Homebrew 来安装最新版的 Python[^3]。 ```bash brew install python@3.9 ``` 2. **依赖库管理工具 Conda** - 使用 Anaconda 或 Miniconda 创建虚拟环境以隔离项目依赖项。 ```bash conda create -n whisper-env python=3.9 conda activate whisper-env ``` 3. **Whisper安装** - 在激活的虚拟环境下通过 pip 安装 `openai-whisper`。 ```bash pip install git+https://github.com/openai/whisper.git ``` 此命令会自动拉取最新的 Whisper 版本并解决其依赖关系[^1]。 4. **FFmpeg 配置** - FFmpeg 是处理音频文件的重要工具,可通过 Homebrew 轻松安装。 ```bash brew install ffmpeg echo 'export PATH="/usr/local/opt/ffmpeg/bin:$PATH"' >> ~/.zshrc source ~/.zshrc ``` 5. **验证 GPU 支持** - 对于 Apple Silicon 设备(如 M1/M2),推荐利用 MPS 后端加速推理速度。确保 PyTorch 已正确配置支持 MPS 加速。 ```python import torch print(torch.backends.mps.is_available()) # 输出 True 表明可用 ``` --- #### Windows 系统安装流程 对于 Windows 平台上的用户,则可遵循如下方法来设置开发环境: 1. **Python Anaconda 下载** - 访问官方站点下载适用于 Windows 的 Python 3.11 及 Anaconda 发行包[^2]。 2. **创建新环境** - 执行以下指令建立名为 “whisper”的独立工作区: ```bash conda create -n whisper python=3.11 conda activate whisper ``` 3. **引入必要模块** - 利用 pip 命令获取所需软件包以及额外资源: ```bash pip install git+https://github.com/openai/whisper.git pip install ffmpeg-python ``` 4. **测试初始执行状况** - 尝试加载预训练模型并对样例数据进行转录分析,以此检验整体架构是否正常运作。 ```python import whisper model = whisper.load_model("base") result = model.transcribe("audio.mp3") print(result["text"]) ``` 5. **检查硬件兼容性** - 如果计算机配备 NVIDIA 显卡,请进一步核实 CUDA 是否被妥善集成到现有框架之中以便充分发挥图形处理器效能。 --- #### 自定义编译方式——whisper.cpp 除了上述两种主流途径外,还存在一种更为灵活的选择即采用 C++ 实现版本—whisper.cpp 。它允许开发者自行调整参数甚至优化性能表现而无需受限于特定平台约束条件限制: 1. 克隆仓库至本地磁盘位置; ```bash git clone https://github.com/ggerganov/whisper.cpp.git cd whisper.cpp ``` 2. 编译源码生成二进制文件; ```bash make ./main -h ``` 3. 提供输入音轨路径启动转换进程; ```bash ./main -f your_audio_file.wav ``` 以上便是关于如何从零起步搭建属于自己的 Whisper 系统实例指导说明文档全文内容总结概述完毕! ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值