Transformer代码详解: attention-is-all-you-need-pytorch

前言

  • for小白:先去了解Transformer的一下理论,还有attention,再去读代码。
  • for进阶者:读代码的时候结合注释一起看,注意维度的变换,还有一些变量的默认值。Transformer是一个个小模块组合而成的,建议从小模块代码开始读代码,最后从总的读到小模块,相信这样对你会有更加深刻的理解。读代码结合着网络结构一起看。
  • 代码放在这里

参考:
attention-is-all-you-need-pytorch
NLP 中的Mask全解
Transformer 权重共享

Transformer代码详解-pytorch版

Transformer模型结构

Transformer模型结构如下图:
在这里插入图片描述

  • Transformer的整体结构就是分成EncoderDecoder两部分,并且两部分之间是有联系的,可以注意到Encoder的输出是Decoder第二个Multi-head Attention中和的输入。
  • EncoderDecoder分别由N个EncoderLayerDecoderLayer组成。N默认为6个。
  • EncoderLayer由两个SubLayers组成,分别是Multi-head AttentionFeed ForwardDecoderLayer则是由三个SubLayers组成,分别是Masked Multi-head AttentionMulti-head AttentionFeed Forward
  • Multi-head Attention是用ScaledDotProductAttentionLinear组成。Feed Forward是由Linear组成。
  • Add & Norm指的是残差连接之后再进行LayerNorm。

各模块结构结构

Multi-head Attention结构
在这里插入图片描述
Feed Forward结构
在这里插入图片描述
EncoderLayer结构
在这里插入图片描述
DecoderLayer结构
在这里插入图片描述
Encoder结构
在这里插入图片描述
Decoder结构
在这里插入图片描述

ScaledDotProductAttention模块

ScaledDotProductAttention做的是一个attention计算。公式如下:
在这里插入图片描述
输入q k v,可以q先除以根号d_k(d_k默认为64,根号d_k就为8),再与k的转置相乘,再经过softmax,最后与v相乘。下图的操作和公式所做的东西是一样的。
在这里插入图片描述

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        # 其实就是论文中的根号d_k
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):
        # sz_b: batch_size 批量大小
        # len_q,len_k,len_v: 序列长度 在这里他们都相等
        # n_head: 多头注意力 默认为8
        # d_k,d_v: k v 的dim(维度) 默认都是64
        # 此时q的shape为(sz_b, n_head, len_q, d_k) (sz_b, 8, len_q, 64)
        # 此时k的shape为(sz_b, n_head, len_k, d_k) (sz_b, 8, len_k, 64)
        # 此时v的shape为(sz_b, n_head, len_k, d_v) (sz_b, 8, len_k, 64)
        # q先除以self.temperature(论文中的根号d_k) k交换最后两个维度(这样才可以进行矩阵相乘) 最后两个张量进行矩阵相乘
        # attn的shape为(sz_b, n_head, len_q, len_k)
        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            # 用-1e9代替0 -1e9是一个很大的负数 经过softmax之后接近与0
            # 其一:去除掉各种padding在训练过程中的影响
            # 其二,将输入进行遮盖,避免decoder看到后面要预测的东西。(只用在decoder中)
            attn = attn.masked_fill(mask == 0, -1e9)

        # 先在attn的最后一个维度做softmax 再dropout 得到注意力分数
        attn = self.dropout(F.softmax(attn, dim=-1))
        # 最后attn与v进行矩阵相乘
        # output的shape为(sz_b, 8, len_q, 64)
        output = torch.matmul(attn, v)
        # 返回 output和注意力分数
        return output, attn

MultiHeadAttention和PositionwiseFeedForward模块

MultiHeadAttention做的是将q k v先经过线性层投影,再做ScaledDotProductAttention ,最后经过一个线性层。也就是下图的操作:
在这里插入图片描述
对应着Transformer的模块是:
在这里插入图片描述
PositionwiseFeedForward其实就是MLP。对应着Transformer的模块是:
在这里插入图片描述

# q k v 先经过不同的线性层 再用ScaledDotProductAttention 最后再经过一个线性层
class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        # 这里的n_head, d_model, d_k, d_v分别默认为8, 512, 64, 64
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        # len_q, len_k, len_v 为输入的序列长度
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        # 用作残差连接
        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        # q k v 分别经过一个线性层再改变维度
        # 由(sz_b, len_q, n_head*d_k) => (sz_b, len_q, n_head, d_k) (sz_b, len_q, 8*64) => (sz_b, len_q, 8, 64)
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        # 交换维度做attention
        # 由(sz_b, len_q, n_head, d_k) => (sz_b, n_head, len_q, d_k) (sz_b, len_q, 8, 64) => (sz_b, 8, len_q, 64)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            # 为head增加一个维度
            mask = mask.unsqueeze(1)   # For head axis broadcasting.
    
        # 做attention
        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        # (sz_b, 8, len_k, 64) => (sz_b, len_k, 8, 64) => (sz_b, len_k, 512)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        # 经过fc和dropout
        q = self.dropout(self.fc(q))
        # 残差连接 论文中的Add & Norm中的Add
        q += residual
        # 论文中的Add & Norm中的Norm
        q = self.layer_norm(q)
        # q的shape为(sz_b, len_q, 512)
        # attn的shape为(sz_b, n_head, len_q, len_k)
        return q, attn


# 其实就是一个MLP而已
class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
    	# d_in默认为512 d_hid默认为2048
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid) # position-wise
        self.w_2 = nn.Linear(d_hid, d_in) # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):

        residual = x

        x = self.w_2(F.relu(self.w_1(x)))
        x = self.dropout(x)
        # 下面两句对应论文中的Add & Norm中
        x += residual
        
        x = self.layer_norm(x)

        return x

EncoderLayer和DecoderLayer模块

EncoderLayer由两个SubLayers组成,分别是Multi-head AttentionFeed Forward。对应着Transformer的模块是:
在这里插入图片描述

DecoderLayer则是由三个SubLayers组成,分别是Masked Multi-head AttentionMulti-head AttentionFeed Forward。对应着Transformer的模块是:
在这里插入图片描述

class EncoderLayer(nn.Module):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        # d_model, d_inner, n_head, d_k, d_v分别默认为512, 2048, 8, 64, 64
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        # q k v都是enc_input
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask)
        enc_output = self.pos_ffn(enc_output)
        # enc_output的shape为(sz_b, len_q, 512)
        # enc_slf_attn的shape为(sz_b, n_head, len_q, len_k)
        return enc_output, enc_slf_attn


class DecoderLayer(nn.Module):
    ''' Compose with three layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(DecoderLayer, self).__init__()
        # 这里的第一个MultiHeadAttention是带Masked
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.enc_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(
            self, dec_input, enc_output,
            slf_attn_mask=None, dec_enc_attn_mask=None):
        # q k v都是dec_input
        dec_output, dec_slf_attn = self.slf_attn(
            dec_input, dec_input, dec_input, mask=slf_attn_mask)
        # q是dec_output k和v是enc_output
        dec_output, dec_enc_attn = self.enc_attn(
            dec_output, enc_output, enc_output, mask=dec_enc_attn_mask)
        dec_output = self.pos_ffn(dec_output)
        # dec_output的shape为(sz_b, len_q, 512)
        # dec_slf_attn的shape为(sz_b, n_head, len_q, len_k)
        # dec_enc_attn的shape为(sz_b, n_head, len_q, len_k)
        return dec_output, dec_slf_attn, dec_enc_attn

Encoder和Decoder模块

  • padding mask:处理非定长序列,区分padding和非padding部分。对应下面get_pad_mask()函数,用于Encoder中。
  • sequence mask:防止标签泄露。sequence mask 一般是通过生成一个上三角为0的矩阵来实现的,上三角区域对应要mask的部分。对于下面的get_subsequent_mask()函数。
  • Transformer代码中Decoder使用的mask是get_pad_mask()得到的结果和get_subsequent_mask()得到的结果进行与运算(&)。我认为是既要区分padding和非padding部分,也要防止标签泄露。
    # get_pad_mask()得到的结果和get_subsequent_mask()得到的结果进行与运算(&)
    #               [[[1 0 0]      [[[1 0 0]
    # [[[1 1 0]]] &   [1 1 0]   =    [1 1 0]
    #                 [1 1 1]]]      [1 1 0]]]
# 获取mask并增加一个维度
# pad_idx一般为0
# (batch_size, seq_len) => (batch_size, 1, seq_len) (1, 3) => (1, 1, 3)
# 如输入seq为[[1,2,0]] 输出为 [[[1 1 0]]]
def get_pad_mask(seq, pad_idx):
    return (seq != pad_idx).unsqueeze(-2)


def get_subsequent_mask(seq):
    ''' For masking out the subsequent info. '''
    sz_b, len_s = seq.size()
    # 例如输入的seq的shape为(1, 3)
    # torch.triu(torch.ones((1, len_s, len_s), device=seq.device), diagonal=1))的结果是:
    # [[[0 1 1]
    #   [0 0 1]
    #   [0 0 0]]]

    #                   [[[1 0 0]
    # subsequent_mask =   [1 1 0]
    #                     [1 1 1]]]
	
	# get_pad_mask()得到的结果和get_subsequent_mask()得到的结果进行与运算(&)
    #               [[[1 0 0]      [[[1 0 0]
    # [[[1 1 0]]] &   [1 1 0]   =    [1 1 0]
    #                 [1 1 1]]]      [1 1 0]]]
    subsequent_mask = (1 - torch.triu(
        torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
    return subsequent_mask

相比于rnn,attention缺少了位置信息,需要在输出的时候加上位置信息,位置编码的公式如下:
在这里插入图片描述

  • pos的范围是[0,200),pos=[0,1,2,3,…,199],长度=200
  • i的范围是[0,256), i=[0,0,1,1,2,2,…,255,255],长度=512
  • 代码是先计算出
    在这里插入图片描述
    在偶数位置,也就是偶数列再进行sin运算;在奇数位置,也就是奇数列再进行cos运算。
    位置编码对应着Transformer的模块是:
    在这里插入图片描述
class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()

        # Not a parameter
        self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        # n_position默认为200 d_hid默认为d512
        ''' Sinusoid position encoding table '''
        # TODO: make it with torch instead of numpy

        # 利用论文中的公式获取某个位置的向量
        def get_position_angle_vec(position):
            # 长度为512 (hid_j // 2)就是论文中的i
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
        # shape为(200, 512)
        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        # 偶数位置使用sin编码
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        # 奇数位置使用cos编码
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
        # shape为(1, n_position, d_hid)
        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def forward(self, x):
        # n_position默认为200 seq_len不会超过200
        # 这里x加入位置编码
        return x + self.pos_table[:, :x.size(1)].clone().detach()

Encoder对应着Transformer的模块是:
在这里插入图片描述

class Encoder(nn.Module):
    ''' A encoder model with self attention mechanism. '''

    def __init__(
            self, n_src_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
            d_model, d_inner, pad_idx, dropout=0.1, n_position=200, scale_emb=False):
        # n_src_vocab: 源语言词汇表的大小
        # d_word_vec: 词嵌入的维度
        super().__init__()

        # padding_idx如果指定 则padding_idx处的条目不会影响梯度 因此padding_idx 处的嵌入向量在训练期间不会更新 即它仍然是一个固定的"pad"
        self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx)
        self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        # Encoder包含了n_layers个EncoderLayer n_layers默认为6
        self.layer_stack = nn.ModuleList([
            EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
        self.scale_emb = scale_emb
        self.d_model = d_model

    def forward(self, src_seq, src_mask, return_attns=False):
        # src_seq: 输入的序列
        # src_mask: get_pad_mask()得到的结果
        enc_slf_attn_list = []

        # -- Forward
        # 词嵌入
        enc_output = self.src_word_emb(src_seq)
        if self.scale_emb:
            enc_output *= self.d_model ** 0.5
        # 加上位置编码
        enc_output = self.dropout(self.position_enc(enc_output))
        enc_output = self.layer_norm(enc_output)
        # n_layers个EncoderLayer串联在一起
        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
            enc_slf_attn_list += [enc_slf_attn] if return_attns else []

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output,

Decoder对应着Transformer的模块是:
在这里插入图片描述

class Decoder(nn.Module):
    ''' A decoder model with self attention mechanism. '''

    def __init__(
            self, n_trg_vocab, d_word_vec, n_layers, n_head, d_k, d_v,
            d_model, d_inner, pad_idx, n_position=200, dropout=0.1, scale_emb=False):
        # n_trg_vocab: 翻译后语言词汇表的大小
        # d_word_vec: 词嵌入的维度
        super().__init__()

        self.trg_word_emb = nn.Embedding(n_trg_vocab, d_word_vec, padding_idx=pad_idx)
        self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        # Decoder包含了n_layers个DecoderLayer n_layers默认为6
        self.layer_stack = nn.ModuleList([
            DecoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
        self.scale_emb = scale_emb
        self.d_model = d_model

    def forward(self, trg_seq, trg_mask, enc_output, src_mask, return_attns=False):
        # trg_seq:翻译后语言序列
        # trg_mask: get_pad_mask()得到的结果和get_subsequent_mask()得到的结果进行与运算(&)
        # enc_output: Encoder的输出
        # src_mask: get_pad_mask()得到的结果
        dec_slf_attn_list, dec_enc_attn_list = [], []

        # -- Forward
        # 词嵌入
        dec_output = self.trg_word_emb(trg_seq)
        if self.scale_emb:
            dec_output *= self.d_model ** 0.5
        # 加上位置编码
        dec_output = self.dropout(self.position_enc(dec_output))
        dec_output = self.layer_norm(dec_output)
        # n_layers个DecoderLayer串联在一起
        for dec_layer in self.layer_stack:
            dec_output, dec_slf_attn, dec_enc_attn = dec_layer(
                dec_output, enc_output, slf_attn_mask=trg_mask, dec_enc_attn_mask=src_mask)
            dec_slf_attn_list += [dec_slf_attn] if return_attns else []
            dec_enc_attn_list += [dec_enc_attn] if return_attns else []

        if return_attns:
            return dec_output, dec_slf_attn_list, dec_enc_attn_list
        return dec_output,

Transformer

class Transformer(nn.Module):
    ''' A sequence to sequence model with attention mechanism. '''

    def __init__(
            self, n_src_vocab, n_trg_vocab, src_pad_idx, trg_pad_idx,
            d_word_vec=512, d_model=512, d_inner=2048,
            n_layers=6, n_head=8, d_k=64, d_v=64, dropout=0.1, n_position=200,
            trg_emb_prj_weight_sharing=True, emb_src_trg_weight_sharing=True,
            scale_emb_or_prj='prj'):

        super().__init__()

        self.src_pad_idx, self.trg_pad_idx = src_pad_idx, trg_pad_idx

        # In section 3.4 of paper "Attention Is All You Need", there is such detail:
        # "In our model, we share the same weight matrix between the two
        # embedding layers and the pre-softmax linear transformation...
        # In the embedding layers, we multiply those weights by \sqrt{d_model}".
        #
        # Options here:
        #   'emb': multiply \sqrt{d_model} to embedding output
        #   'prj': multiply (\sqrt{d_model} ^ -1) to linear projection output
        #   'none': no multiplication

        assert scale_emb_or_prj in ['emb', 'prj', 'none']
        scale_emb = (scale_emb_or_prj == 'emb') if trg_emb_prj_weight_sharing else False
        self.scale_prj = (scale_emb_or_prj == 'prj') if trg_emb_prj_weight_sharing else False
        self.d_model = d_model

        self.encoder = Encoder(
            n_src_vocab=n_src_vocab, n_position=n_position,
            d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
            n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
            pad_idx=src_pad_idx, dropout=dropout, scale_emb=scale_emb)

        self.decoder = Decoder(
            n_trg_vocab=n_trg_vocab, n_position=n_position,
            d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner,
            n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v,
            pad_idx=trg_pad_idx, dropout=dropout, scale_emb=scale_emb)

        self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p) 

        assert d_model == d_word_vec, \
        'To facilitate the residual connections, \
         the dimensions of all module outputs shall be the same.'

        # Decoder中Embedding层和FC层权重共享
        # Embedding层参数维度是:(v,d),FC层参数维度是:(d,v),可以直接共享嘛,还是要转置?其中v是词表大小,d是embedding维度。
        # 查看 pytorch 源码发现真的可以直接共享:
        if trg_emb_prj_weight_sharing:
            # Share the weight between target word embedding & last dense layer
            self.trg_word_prj.weight = self.decoder.trg_word_emb.weight
        # Encoder和Decoder间的Embedding层权重共享
        if emb_src_trg_weight_sharing:
            self.encoder.src_word_emb.weight = self.decoder.trg_word_emb.weight


    def forward(self, src_seq, trg_seq):

        src_mask = get_pad_mask(src_seq, self.src_pad_idx)
        trg_mask = get_pad_mask(trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq)

        enc_output, *_ = self.encoder(src_seq, src_mask)
        dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask)
        seq_logit = self.trg_word_prj(dec_output)
        if self.scale_prj:
            seq_logit *= self.d_model ** -0.5

        return seq_logit.view(-1, seq_logit.size(2))

总结

这是我在阅读attention-is-all-you-need-pytorch的代码中自己的理解,难免会有理解错误的地方,如果发现有错误,希望能指正出来。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个使用 PyTorch 实现 Transformer 和 Self-Attention 的示例代码: 首先,我们需要导入所需的库: ```python import torch import torch.nn as nn import torch.nn.functional as F ``` 然后,我们定义一个 Self-Attention 类: ```python class SelfAttention(nn.Module): def __init__(self, embed_size, heads): super(SelfAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads" self.values = nn.Linear(self.head_dim, self.head_dim, bias=False) self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False) self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False) self.fc_out = nn.Linear(heads*self.head_dim, embed_size) def forward(self, values, keys, query, mask): N = query.shape[0] value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1] # Split embedding into self.heads pieces values = values.reshape(N, value_len, self.heads, self.head_dim) keys = keys.reshape(N, key_len, self.heads, self.head_dim) query = query.reshape(N, query_len, self.heads, self.head_dim) values = self.values(values) # (N, value_len, heads, head_dim) keys = self.keys(keys) # (N, key_len, heads, head_dim) query = self.queries(query) # (N, query_len, heads, heads_dim) # Compute dot product attention energy = torch.einsum("nqhd,nkhd->nhqk", [query, keys]) # energy shape: (N, heads, query_len, key_len) if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3) # Compute attention output out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape( N, query_len, self.heads*self.head_dim ) out = self.fc_out(out) return out ``` 接下来,我们定义一个 TransformerBlock 类: ```python class TransformerBlock(nn.Module): def __init__(self, embed_size, heads, dropout, forward_expansion): super(TransformerBlock, self).__init__() self.attention = SelfAttention(embed_size, heads) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.feed_forward = nn.Sequential( nn.Linear(embed_size, forward_expansion*embed_size), nn.ReLU(), nn.Linear(forward_expansion*embed_size, embed_size), ) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, mask): attention = self.attention(value, key, query, mask) x = self.dropout(self.norm1(attention + query)) forward = self.feed_forward(x) out = self.dropout(self.norm2(forward + x)) return out ``` 最后,我们定义一个 TransformerEncoder 类: ```python class TransformerEncoder(nn.Module): def __init__(self, embed_size, heads, dropout, forward_expansion, num_layers): super(TransformerEncoder, self).__init__() self.layers = nn.ModuleList( [ TransformerBlock(embed_size, heads, dropout, forward_expansion) for _ in range(num_layers) ] ) def forward(self, x, mask): for layer in self.layers: x = layer(x, x, x, mask) return x ``` 现在,我们已经定义了一个完整的 Transformer 模型,可以在实际应用中使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值