二分法求函数根的原理为:如果连续函数 f(x) 在区间 [a,b] 的两个端点取值异号,即 f(a)f(b) < 0,则它在这个区间内至少存在 1 个根 r,即 f( r ) = 0。
二分法的步骤为:
- 检查区间长度,如果小于给定阈值,则停止,输出区间中点 (a + b) / 2;否则
- 如果 f(a)f(b) < 0,则计算中点的值 f((a + b) / 2);
- 如果 f((a + b) / 2)正好为 0,则 (a + b) / 2 就是要求的根;否则
- 如果 f((a + b) / 2)与 f(a) 同号,则说明根在区间 [(a + b) / 2, b],令 a = (a + b) / 2,重复循环;
- 如果 f((a + b) / 2)与 f(b) 同号,则说明根在区间 [a, (a + b) / 2],令 b = (a + b) / 2,重复循环。
本题目要求编写程序,计算给定 3 阶多项式 f(x) = a3x3 + a2x2 + a1x + a0 在给定区间 [a,b] 内的根。
输入格式:
输入在第 1 行中顺序给出多项式的 4 个系数 a3, a2, a1, a0,在第 2 行中顺序给出区间端点 a 和 b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后 2 位。
输入样例:
3 -1 -3 1
-0.5 0.5
输出样例:
0.33
来源:
来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/14/exam/problems/798
提交:
题解:
#include <stdio.h>
#include <math.h>
// 给定的阈值
#define ACCURACY 0.0001
int main() {
double a3, a2, a1, a0;
double a, b;
scanf("%lf%lf%lf%lf", &a3, &a2, &a1, &a0);
scanf("%lf%lf", &a, &b);
double mid = (a + b) / 2;
while (fabs(a - b) >= ACCURACY) {
// 区间中点恰好是根
if ((a3 * pow(mid, 3) + a2 * pow(mid, 2) + a1 * mid + a0) == 0) {
break;
}
if ((a3 * pow(a, 3) + a2 * pow(a, 2) + a1 * a + a0) * (a3 * pow(mid, 3) + a2 * pow(mid, 2) + a1 * mid + a0) < 0) {
// 根在前半区间
b = mid;
} else {
// 根在后半区间
a = mid;
}
mid = (a + b) / 2;
}
printf("%.2lf\n", mid);
return 0;
}