[PTA]7-18 二分法求多项式单根

Spring-_-Bear 的 CSDN 博客导航

二分法求函数根的原理为:如果连续函数 f(x) 在区间 [a,b] 的两个端点取值异号,即 f(a)f(b) < 0,则它在这个区间内至少存在 1 个根 r,即 f( r ) = 0。

二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点 (a + b) / 2;否则
  • 如果 f(a)f(b) < 0,则计算中点的值 f((a + b) / 2);
    • 如果 f((a + b) / 2)正好为 0,则 (a + b) / 2 就是要求的根;否则
    • 如果 f((a + b) / 2)与 f(a) 同号,则说明根在区间 [(a + b) / 2, b],令 a = (a + b) / 2,重复循环;
    • 如果 f((a + b) / 2)与 f(b) 同号,则说明根在区间 [a, (a + b) / 2],令 b = (a + b) / 2,重复循环。

本题目要求编写程序,计算给定 3 阶多项式 f(x) = a3x3 + a2x2 + a1x + a0 在给定区间 [a,b] 内的根。

输入格式:

输入在第 1 行中顺序给出多项式的 4 个系数 a3, a2, a1, a0,在第 2 行中顺序给出区间端点 a 和 b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后 2 位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

来源:

来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/14/exam/problems/798

提交:

在这里插入图片描述

题解:

#include <stdio.h>
#include <math.h>

// 给定的阈值
#define ACCURACY  0.0001

int main() {
    double a3, a2, a1, a0;
    double a, b;
    scanf("%lf%lf%lf%lf", &a3, &a2, &a1, &a0);
    scanf("%lf%lf", &a, &b);

    double mid = (a + b) / 2;
    while (fabs(a - b) >= ACCURACY) {
        // 区间中点恰好是根
        if ((a3 * pow(mid, 3) + a2 * pow(mid, 2) + a1 * mid + a0) == 0) {
            break;
        }

        if ((a3 * pow(a, 3) + a2 * pow(a, 2) + a1 * a + a0) * (a3 * pow(mid, 3) + a2 * pow(mid, 2) + a1 * mid + a0) < 0) {
            // 根在前半区间
            b = mid;
        } else {
            // 根在后半区间
            a = mid;
        }

        mid = (a + b) / 2;
    }

    printf("%.2lf\n", mid);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值