Day5 12.28

1.混合背包问题
有 N 种物品和一个容量是 V 的背包。

物品一共有三类:

第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si 次(多重背包);
每种体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

si=−1 表示第 i 种物品只能用1次;
si=0 表示第 i 种物品可以用无限次;
si>0 表示第 i 种物品可以使用 si 次;
输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000
输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8

思路:
看了一眼数据大小,发现把完全背包和多重背包都拆成01背包复杂度也是绰绰有余,于是就拆,然后拆的时候进行二进制优化即可
代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int a[1000005];
int b[1000005];
int dp[1000005];
int t = 0;
void kkk(int v, int w, int s)
{
	int e = 1;
	while (e < s)
	{
		a[++t] = e * v;
		b[t] = e * w;
		s -= e;
		e *= 2;
	}
	if (s > 0)
	{
		a[++t] = s * v;
		b[t] = s * w;
	}
}
int main()
{
	int N, V;
	cin >> N >> V;
	int v, w, s;
	for (int i = 1; i <= N; i++)
	{
		cin >> v >> w >> s;
		if (s == -1)
		{
			a[++t] = v;
			b[t] = w;
		}
		if (s == 0)
		{
			s = V / v;
			kkk(v, w, s);
		}
		if (s > 0)
		{
			kkk(v, w, s);
		}
	}
	for (int i = 1; i <= t; i++)
	{
		for (int j = V; j >= a[i]; j--)
		{
			dp[j] = max(dp[j], dp[j - a[i]] + b[i]);
		}
	}
	cout << dp[V];
	return 0;
}

疫情阳了休息了几天,今天好点了重新开始

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,您的问题是关于动态时间规整算法的声音匹配问题,我会尽力回答。根据您的要求,我会保密您的问题,以下是对您的问题的回答: 动态时间规整算法(Dynamic Time Warping,DTW)可以用于语音序列的比对,它可以解决语音序列的不同长度及速度变化的问题。下面是对您提出的问题的回答: 首先,我们需要计算出语音序列a和b之间的距离,然后根据这些距离结果,构建出一个匹配矩阵,最后通过匹配矩阵来找到最好的语音匹配路径和距离。 计算距离:对于两个特征向量ai和bj,我们可以用欧几里得距离或曼哈顿距离来计算它们之间的距离,然后用这些距离的集合作为DTW的距离度量。 然后,我们可以通过动态规划的方式计算匹配矩阵。匹配矩阵的第(i,j)个元素表示从a序列的第i个位置到b序列的第j个位置的所有可能配对方案中,最好的一种方案的距离。匹配矩阵中的第一行和第一列为0,因为我们认为第一个位置到任何一个位置的距离都是0。 最后,我们可以从匹配矩阵的右下角开始回溯,利用动态规划的原则来找到最佳的语音匹配路径和距离。 匹配矩阵: 0 inf inf inf inf inf inf inf inf inf inf 0 2.83 5.66 7.81 10.49 10.92 11.66 12.37 14.04 16.62 19.45 0 3.61 5 6.16 7.81 8.06 9.37 12.06 14.32 16.4 17.92 0 4.24 4.9 5.92 6.71 7.07 8.48 11.49 14.21 15.68 17.62 0 6.08 6.18 7.81 6.52 7.21 8.71 9 11.57 13.6 13.6 0 13.18 12.56 12.69 11.18 9.9 9.49 9.43 10.75 12.44 11.66 0 14.87 16.49 16.15 12.23 11.06 10.24 10.05 12.28 11.95 12.37 0 18.83 19.85 20.35 15.53 12.2 11.95 12.24 13.54 15.28 17.43 0 20.96 24.75 25.27 20.09 16.64 15.72 17.11 17.26 18.97 20.16 0 21.84 26.04 28.56 24.24 22 20.99 22.25 22.11 20.92 21.29 最佳匹配距离:21.29 最佳匹配路径:[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 5), (7, 6), (8, 7), (9, 8), (10, 9)]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值