图的顶点可达闭包(待验证)

题解
  1. 实际上该问题就是求传递闭包
题目
问题 D: 图的顶点可达闭包
时间限制: 1 Sec  内存限制: 128 MB
提交: 545  解决: 270
[提交][状态][讨论版]
题目描述
给定有向图的邻接矩阵A,其元素定义为:若存在顶点i到顶点j的有向边则A[i,j]=1,若没有有向边则A[i,j]= 0。试求A的可达闭包矩阵A*,其元素定义为:若存在顶点i到顶点j的有向路径则A*[i,j]=1,若没有有向路径则A*[i,j]= 0。

输入
第1行顶点个数n

第2行开始的n行有向图的邻接矩阵,元素之间由空格分开

输出
有向图的可达闭包矩阵A*,元素之间由空格分开

样例输入
4
0 1 0 1
0 0 1 0
0 0 0 0
0 0 0 0
样例输出
0 1 1 1
0 0 1 0
0 0 0 0
0 0 0 0
代码块
#include <iostream>
using namespace std;

int main(void)
{
    int i, j, k, vexnum;
    cin>>vexnum;
    int matrix[vexnum][vexnum];
    for(i=0; i<vexnum; i++)
        for(j=0; j<vexnum; j++)
            cin>>matrix[i][j];
    for(k=0; k<vexnum; k++)//Floyd暴力求解法,时间复杂度O(n^3)
        for(i=0; i<vexnum; i++)
            for(j=0; j<vexnum; j++)
                if(matrix[i][k] && matrix[k][j])
                    matrix[i][j] = 1;
    for(i=0; i<vexnum; i++)
        for(j=0; j<vexnum; j++)
        {
            if(j==vexnum-1)
                cout<<matrix[i][j]<<endl;
            else
                cout<<matrix[i][j]<<' ';
        }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值