达梦数据库导出数据表结构为excel或html或文本(写文档用)

本文介绍如何使用达梦数据库自带工具导出表结构到Excel、HTML或文本格式,适用于制作数据库设计文档。通过SQL查询获取字段名、类型、长度等详细信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

达梦数据库导出数据表结构为excel或html或文本(写文档用)
项目中用的是国产达梦数据库,项目做了一期后应该是要数据库设计文档。其中就有一个需要表结构(字段,字段精度,说明。。。)
因为是国产数据库所以他和mysql,oracle,sqlServer的工具是不能互通共享的只能用他本身携带的工具来进行数据迁移,表迁移,数据导入导出等一系列操作。
经过查阅文档和资料终于找到了方法。
sql如下:

select 
	utc.column_name 字段名,
	utc.data_type 字段类型,
	utc.data_length 数据长度,
	utc.data_precision 数据精度,
	utc.nullable 是否为空 ,
	ucc.comments 备注
from user_tab_columns utc,user_col_comments ucc
where utc.column_name = ucc.column_name and utc.Table_Name = ucc.Table_Name 
and utc.Table_Name = '表名' and owner='模式名'

1:步骤
在这里插入图片描述
2:步骤
在这里插入图片描述

最后点确定就好了。导出的内容和数据库结果集一样。
学习笔记,仅供参考!有更好的方法的,欢迎指导。

### 达梦数据库表结构导出Excel 的方法 达梦数据库支持多种方式将表结构导出Excel 文件。以下是几种常见的实现方法: #### 方法一:使用 SQL 查询并配合图形化工具 可以通过编写 SQL 查询语句获取表结构信息,再利用图形化工具(如 DBeaver Navicat)完成导出操作。 查询语句如下: ```sql SELECT utc.Table_Name AS 表名称, tab.COMMENTS AS 表中文名称, utc.column_name AS 字段名, ucc.comments AS 备注, utc.data_type AS 字段类型, utc.data_length AS 数据长度, utc.data_precision AS 数据精度, CASE WHEN utc.nullable = 'Y' THEN '是' ELSE '否' END AS 是否为空 FROM user_tab_columns utc, user_col_comments ucc, SYS.USER_TAB_COMMENTS tab WHERE utc.column_name = ucc.column_name AND utc.Table_Name = ucc.Table_Name AND utc.Table_Name = tab.TABLE_NAME; ``` 执行上述 SQL 后,在查询结果界面右键单击任意一条记录,选择“导出”,按照提示保存为 Excel 文件[^3]。 --- #### 方法二:手动指定特定表的结构导出 如果只需要导出某个具体表的结构,则可以调整 SQL 语句中的过滤条件 `utc.Table_Name` 和 `owner` 参数。例如: ```sql SELECT utc.column_name AS 字段名, utc.data_type AS 字段类型, utc.data_length AS 数据长度, utc.data_precision AS 数据精度, CASE WHEN utc.nullable = 'Y' THEN '是' ELSE '否' END AS 是否为空, ucc.comments AS 备注 FROM user_tab_columns utc, user_col_comments ucc WHERE utc.column_name = ucc.column_name AND utc.Table_Name = ucc.Table_Name AND utc.Table_Name = '目标表名'; ``` 运行此脚本后同样可通过图形化工具完成导出操作[^4]。 --- #### 方法三:基于 Python 脚本自动化处理 对于批量任务者需要更高灵活性的情况,可借助编程语言来实现自动化的表结构提取与文件生成过程。下面是一个简单的 Python 实现案例: ```python import cx_Oracle as dm_db import pandas as pd # 连接配置 conn_info = { "user": "用户名", "password": "密码", "dsn": "主机地址/服务名" } def fetch_table_structure(): conn = None try: conn = dm_db.connect(**conn_info) cursor = conn.cursor() query_sql = """ SELECT utc.Table_Name AS 表名称, tab.COMMENTS AS 表中文名称, utc.column_name AS 字段名, ucc.comments AS 备注, utc.data_type AS 字段类型, utc.data_length AS 数据长度, utc.data_precision AS 数据精度, CASE WHEN utc.nullable = 'Y' THEN '是' ELSE '否' END AS 是否为空 FROM user_tab_columns utc, user_col_comments ucc, SYS.USER_TAB_COMMENTS tab WHERE utc.column_name = ucc.column_name AND utc.Table_Name = ucc.Table_Name AND utc.Table_Name = tab.TABLE_NAME; """ df = pd.read_sql(query_sql, con=conn) # 将 DataFrame 写入 Excel 文件 output_file = "./table_structure.xlsx" with pd.ExcelWriter(output_file) as writer: df.to_excel(writer, sheet_name="Sheet1", index=False) except Exception as e: print(f"Error occurred: {e}") finally: if conn is not None: conn.close() fetch_table_structure() ``` 该代码片段实现了连接达梦数据库、读取表结构数据以及将其存储为本地 Excel的功能[^1]。 --- #### 方法四:直接调用 DM 自带功能 作为一款成熟的国产关系型数据库管理系统,达梦提供了专门用于元数据管理的操作命令和服务程序。用户可以直接登录客户端控制台输入类似以下指令完成相应工作: ```bash expdp schemas=RTEMS directory=/path/to/output dumpfile=output.dmp logfile=log.txt tables=(TABLE1,TABLE2,...); ``` 虽然这种方式主要面向整个 Schema 层面而非单独某张表格,但它仍然能够满足大部分场景下的需求[^5]。 --- ### 总结 以上介绍了四种不同途径帮助开发者解决如何把达梦数据库里的表定义迁移到外部电子表格的问题。每种方案各有优劣,请依据实际环境和个人偏好做出合理抉择。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值